修改数组形状

函数

描述

reshape

不改变数据的条件下修改形状

flat

数组元素迭代器

flatten

返回一份数组拷贝,对拷贝所做的修改不会影响原始数组

ravel

返回展开数组

numpy.reshape
numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下:
numpy.reshape(arr, newshape, order=‘C’)

  • arr:要修改形状的数组
  • newshape:整数或者整数数组,新的形状应当兼容原有形状
  • order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘k’ – 元素在内存中的出现顺序。

numpy.ndarray.flat
numpy.ndarray.flat 是一个数组元素迭代器,实例如下:

import numpy as np
 
a = np.arange(9).reshape(3,3) 
print ('原始数组:')
for row in a:
    print (row)
 
#对数组中每个元素都进行处理,可以使用flat属性,该属性是一个数组元素迭代器:
print ('迭代后的数组:')
for element in a.flat:
    print (element)

输出结果如下:

原始数组:
[0 1 2]
[3 4 5]
[6 7 8]
迭代后的数组:
0
1
2
3
4
5
6
7
8

numpy.ndarray.flatten
numpy.ndarray.flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组,格式如下:

ndarray.flatten(order='C')

参数说明:
order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘K’ – 元素在内存中的出现顺序。

import numpy as np
 
a = np.arange(8).reshape(2,4)
 
print ('原数组:')
print (a)
print ('\n')
# 默认按行
 
print ('展开的数组:')
print (a.flatten())
print ('\n')
 
print ('以 F 风格顺序展开的数组:')
print (a.flatten(order = 'F'))

输出结果如下:

原数组:
[[0 1 2 3]
 [4 5 6 7]]


展开的数组:
[0 1 2 3 4 5 6 7]


以 F 风格顺序展开的数组:
[0 4 1 5 2 6 3 7]

numpy.ravel
numpy.ravel() 展平的数组元素,顺序通常是"C风格",返回的是数组视图(view,有点类似 C/C++引用reference的意味),修改会影响原始数组。

该函数接收两个参数:

numpy.ravel(a, order='C')

参数说明:

order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'K' -- 元素在内存中的出现顺序。
import numpy as np
 
a = np.arange(8).reshape(2,4)
 
print ('原数组:')
print (a)
print ('\n')
 
print ('调用 ravel 函数之后:')
print (a.ravel())
print ('\n')
 
print ('以 F 风格顺序调用 ravel 函数之后:')
print (a.ravel(order = 'F'))

输出结果如下:

原数组:
[[0 1 2 3]
 [4 5 6 7]]


调用 ravel 函数之后:
[0 1 2 3 4 5 6 7]


以 F 风格顺序调用 ravel 函数之后:
[0 4 1 5 2 6 3 7]

翻转数组

函数

描述

transpose

对换数组的维度

ndarray.T

和 self.transpose() 相同

rollaxis

向后滚动指定的轴

swapaxes

对换数组的两个轴

numpy.transpose
numpy.transpose 函数用于对换数组的维度,格式如下:
numpy.transpose(arr, axes)
参数说明:

  • arr:要操作的数组
  • axes:整数列表,对应维度,通常所有维度都会对换。
    numpy.rollaxis
    numpy.rollaxis 函数向后滚动特定的轴到一个特定位置,格式如下:
    numpy.rollaxis(arr, axis, start)
    参数说明:
  • arr:数组
  • axis:要向后滚动的轴,其它轴的相对位置不会改变
  • start:默认为零,表示完整的滚动。会滚动到特定位置。

numpy.swapaxes
numpy.swapaxes 函数用于交换数组的两个轴,格式如下:
numpy.swapaxes(arr, axis1, axis2)

  • arr:输入的数组
  • axis1:对应第一个轴的整数
  • axis2:对应第二个轴的整数

修改数组维度

维度

描述

broadcast

产生模仿广播的对象

broadcast_to

将数组广播到新形状

expand_dims

扩展数组的形状

squeeze

从数组的形状中删除一维条目

连接数组

函数

描述

concatenate

连接沿现有轴的数组序列

stack

沿着新的轴加入一系列数组。

hstack

水平堆叠序列中的数组(列方向)

vstack

竖直堆叠序列中的数组(行方向)

numpy.concatenate
numpy.concatenate 函数用于沿指定轴连接相同形状的两个或多个数组,格式如下:
numpy.concatenate((a1, a2, …), axis)
参数说明:

a1, a2, ...:相同类型的数组
axis:沿着它连接数组的轴,默认为 0

numpy.stack
numpy.stack 函数用于沿新轴连接数组序列,格式如下:
numpy.stack(arrays, axis)
参数说明:

arrays相同形状的数组序列
axis:返回数组中的轴,输入数组沿着它来堆叠

numpy.hstack
numpy.hstack 是 numpy.stack 函数的变体,它通过水平堆叠来生成数组。
numpy.vstack
numpy.vstack 是 numpy.stack 函数的变体,它通过垂直堆叠来生成数组。
分割数组

函数

数组及操作

split

将一个数组分割为多个子数组

hsplit

将一个数组水平分割为多个子数组(按列)

vsplit

将一个数组垂直分割为多个子数组(按行)

numpy.split
numpy.split 函数沿特定的轴将数组分割为子数组,格式如下:
numpy.split(ary, indices_or_sections, axis)
参数说明:

ary:被分割的数组
indices_or_sections:果是一个整数,就用该数平均切分,如果是一个数组,为沿轴切分的位
置(左开右闭) 
axis:沿着哪个维度进行切向,默认为0,横向切分。为1时,纵向切分

numpy.hsplit
numpy.hsplit 函数用于水平分割数组,通过指定要返回的相同形状的数组数量来拆分原数组。
numpy.vsplit
numpy.vsplit 沿着垂直轴分割,其分割方式与hsplit用法相同。
数组元素的添加与删除

函数

元素及描述

resize

返回指定形状的新数组

append

将值添加到数组末尾

insert

沿指定轴将值插入到指定下标之前

delete

删掉某个轴的子数组,并返回删除后的新数组

unique

查找数组内的唯一元素

numpy.resize
numpy.resize 函数返回指定大小的新数组。
如果新数组大小大于原始大小,则包含原始数组中的元素的副本。
numpy.resize(arr, shape)
参数说明:

arr:要修改大小的数组
shape:返回数组的新形状

numpy.append
numpy.append 函数在数组的末尾添加值。 追加操作会分配整个数组,并把原来的数组复制到新数组中。 此外,输入数组的维度必须匹配否则将生成ValueError。
append 函数返回的始终是一个一维数组。
numpy.append(arr, values, axis=None)
参数说明:

arr:输入数组
values:要向arr添加的值,需要和arr形状相同(除了要添加的轴)
axis:默认为 None。当axis无定义时,是横向加成,返回总是为一维数组!当axis有定义的时
候,分别为0和1的时候。当axis有定义的时候,分别为0和1的时候(列数要相同)。当axis为1
时,数组是加在右边(行数要相同)。

numpy.insert
numpy.insert 函数在给定索引之前,沿给定轴在输入数组中插入值。
如果值的类型转换为要插入,则它与输入数组不同。 插入没有原地的,函数会返回一个新数组。 此外,如果未提供轴,则输入数组会被展开。
numpy.insert(arr, obj, values, axis)
参数说明:

arr:输入数组
obj:在其之前插入值的索引
values:要插入的值
axis:沿着它插入的轴,如果未提供,则输入数组会被展开

numpy.delete
numpy.delete 函数返回从输入数组中删除指定子数组的新数组。 与 insert() 函数的情况一样,如果未提供轴参数,则输入数组将展开。
Numpy.delete(arr, obj, axis)
参数说明:

arr:输入数组
obj:可以被切片,整数或者整数数组,表明要从输入数组删除的子数组
axis:沿着它删除给定子数组的轴,如果未提供,则输入数组会被展开

numpy.unique
numpy.unique 函数用于去除数组中的重复元素。
numpy.unique(arr, return_index, return_inverse, return_counts)

arr:输入数组,如果不是一维数组则会展开
return_index:如果为true,返回新列表元素在旧列表中的位置(下标),并以列表形式储
return_inverse:如果为true,返回旧列表元素在新列表中的位置(下标),并以列表形式储
return_counts:如果为true,返回去重数组中的元素在原数组中的出现次数

别废话,拿你代码给我看。