redis通常使用缓存,是使用一种固定最大内存的使用。当数据达到可使用的最大固定内存时,我们需要通过移除老数据来获取空间。redis作为缓存是否有效的重要标志是如何寻找一种好的策略:删除即将需要使用的数据是一种糟糕的策略,而删除那些很少再次请求的数据则是一种好的策略。
在其他的缓存组件还有个命中率,仅仅表示读请求的比例。访问一个缓存中的keys通常不是分布式的。然而访问经常变化,这意味着不经常访问,相反,有些keys一旦不流行可能会转向最经常访问的keys。
因此,通常一个缓存系统应该尽可能保留那些未来最有可能被访问的keys。针对keys淘汰的策略是:那些未来极少可能被访问的数据应该被移除。
但有一个问题:redis和其他缓存系统不能够预测未来。
LRU算法
缓存系统不能预测未来,原因是:那些很少再次被访问的key也很有可能最近访问相当频繁。如果经常被访问的模式不会突然改变,那么这是一种很有效的策略。然而,“最近经常被访问”似乎更隐晦地标明一种 理念。这种算法被称为LRU算法。最近访问频繁的key相比访问少的key有更高的可能性。
举个例子,这里有4个不同访问周期的key,每一个“~”字符代表一秒,结尾的“|”表示当前时刻。
~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~|
~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~|
~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~|
~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|
A key每5秒请求一次,B周期是2秒,C、D都是10秒。
访问频率最高的是B,因为它的空闲时间最短,这意味着B是4个key中未来最有可能被访问的key。
同样的A和C目前的空闲时间是2s和6s也能很好地反映它们本身的周期。然而你可以看到不够严谨:D的访问周期是10秒,但它却是4个key中最近被访问的。
当然,在一个很长的运行周期中,LRU算法能工作得很好。通常有一个更高访问频率的key当然有一个更低的空闲周期。LRU算法淘汰最少被访问key,那些有最大空闲周期的key。实现上也相当容易,只需要额外跟踪最近被访问的key即可,有时甚至都需要:把所有我们想要淘汰的对象放到一个链表中,当一个对象访问就移除链表头部元素,当我们要淘汰元素是就直接淘汰链表尾部开始。
redis中的LRU:起因
最初,redis不支持LRU算法。当内存有效性成为一个必须被解决的问题时,后来才加上了。通过修改redis对象结构,在每个key对象增加24bit的空间。没有额外的空间使用链表把所有对象放到一个链表中(大指针),因此需要实现得更加有效,不能因为key淘汰算法而让整个服务改动太大。
24bits的对象已经足够去存储当前的unxi时间戳。这个表现,被称为“LRU 时钟”,key元数据经常被更新,所以它是一个有效的算法。
然后,有另一个更加复杂的问题需要解决:如何选择访问间隔最长的key,然后淘汰它。
redis内部采用一个庞大的hash table来保存,添加另外一个数据结构存储时间间隔显然不是一个好的选择。然而我们希望能达到一个LRU本身是一个近似的,通过LRU算法本身来实现。
redis原始的淘汰算法简单实现:当需要淘汰一个key时,随机选择3个key,淘汰其中间隔时间最长的key。基本上,我们随机选择key,淘汰key效果很好。后来随机3个key
改成一个配置项”N随机key”。但把默认值提高改成5个后效果大大提高。考虑到它的效果,你根本不用修改他。
然而,你可能会想这个算法如何有效执行,你可以看到我们如何捣毁了很多有趣的数据。也许简单的N key,我们会遇到很多好的决策,但是当我们淘汰最好的,下一个周期又开始抓。
验证规则第一条:用肉眼观察你的算法
其中有一个观点我已经应用到Redis 3.0正式版中了。在redis2.8中一个LRU缓存经常被使用在多个环境,用户关于淘汰的没有抱怨太多,但是很明显我可以提高它,通过不仅仅是增加额外的空间,还有额外的CPU时间。
然而为了提高某项功能,你必须观察它。有多个不同的方式去观察LRU算法。你可以通过写工具观察,例如模拟不同的工作负载、校验命中率和失误率。这也是我所做的,然而命中率/失误率依赖访问模式,所以我在正常访问模式下额外增加了显示算法质量的信息。
程序非常简单:增加一些指定的keys,然后频繁地访问这些keys以至于每一个key都有一个下降的空闲时间。最终超过50%的keys被增加,一半的老key需要被淘汰。
一个完美理想的LRU实现,应该是没有最新加的key被淘汰,而是淘汰最初的50%的老key。
不同的redis版本和不同的配置下的表现:
观察这个图记得我们讨论的这个实现是redis 2.8的实现。下一节讨论的是redis 3.0中的实现。
规则二:不要丢弃重要信息
借助最新的可视化工具,我可以在尝试新的方法观察和测试几分钟。使用redis最明显有效的提高算法就是,积累对立的垃圾信息在一个淘汰池中。
基本上,当N keys算法被采用时,通常会分配一个很大的线程pool(默认为16key),这个池按照空闲时间排序,所以只有当有一个大于池中的一个或者池为空的时候,最新的key只会进入到这个池中。
有一个小提高这个算法的改动点是,正如你在上图图片中看到的,这个实现没有很复杂。一对memmove()在这里有一点点的提高,但是我不记得这个地方的主要bug了。
同时,一个新的redis-cli
模式去测量LRU算法也增加了(看这个-lru-test
选项)。
我还有另外一个方式去检验LRU算法的好坏,通过一个幂等访问模式。这个工具通常校验用一个不同的测试,新算法工作工作效果好于真实世界负载。它也同样使用流水线和每秒打印访问日志,因此可以被使用不用为了基准不同的思想,至少可以校验和观察明显的速度回归。
规则三、最少使用原则(LFU算法)
我写这篇博客的原因是因为几天前,我重新实现部分逻辑,不同程度的提高redis的缓存淘汰代码。
一切源于一个开放性问题:但你有多个redis 3.2数据库时,而淘汰算法只能在本机选择。因此,假如你全部空闲小的key都是DB0号机器,空闲时间长的key都是1号机器,redis每台机器都会淘汰各自的key。一个更好的选择当然是先淘汰DB1,最后再淘汰DB0。
当redis被当作缓存使用时很少有情况被分成不同的db上,这不是一个好的处理方式。然而这也是我为什么我再一次修改淘汰代码的原因。最终,我能够修改缓存池包括数据库id,使用单缓存池为多个db,代替多缓存池。这种实现很麻烦,但是通过优化和修改代码,最终它比普通实现要快到20%。
然而这时候,我对这个redis缓存淘汰算法的好奇心又被点燃。我想要提升它。我花费了几天想要提高LRU算法实现:或许可以使用更大的缓存池?通过历史时间选择最合适被淘汰的key?
经过一段时间,通过优化我的工具,我理解到:LRU算法受限于数据库中的数据样本,有时可能相反的场景效果非常好,因此要想提高非常非常难。实际上,能通过展示不同算法的图片上看这有点非常明显:每个周期10个keys几乎和理论的LRU算法表现一致。
当原始算法很难提高时,我开始测试新的算法。 如果我们倒回到博客开始,我们说过LRU实际上有点严格。哪些key需要我们真正想要保留:将来有最大可能被访问,最频繁被访问,而不是最近被访问的key。
淘汰最少被访问的key算法成为:LFU(Least Frequently Used),将来要被淘汰腾出新空间给新key。
理论上LFU的思想相当简单,只需要给每个key加一个访问计数器。每次访问就自增1,所以也就很容易知道哪些key被访问更频繁。
当然,LFU也会带起其他问题,不单单是针对redis,对于LFU实现:
1、不能使用“移除顶部元素”的方式,keys必须要根据访问计数器进行排序。每访问一次就得遍历所有key找出访问次数最少的key。
2、LFU不能仅仅是只增加每一访问的计数器。正如我们所讲的,访问模式改变随时变化,因此一个有高访问次数的key,后面很可能没有人继续访问它,因此我们的算法必须要适应超时的情况。
在redis中,第一个问题很好解决:我们可以在LRU的方式一样:随机在缓存池中选举,淘汰其中某项。第二个问题redis还是存在,因此一般对于LFU的思想必须使用一些方式进行减少,或者定期把访问计数器减半。
24位的LFU实现
LFU有它本身的实现,在redis中我们使用自己的24bit来记录LRU。
为了实现LFU仅仅需要在每个对象额外新增24bit:
1、一部分用于保存访问计数器;
2、足够用于决定什么时候将计数器减半的信息;
我的解决方法是把24bit分成两列:
16bits | 8bits |
last decr time | LOG_C |
16位记录最后一次减半时间,那样redis知道上一次减半时间,另外8bit作为访问计数器。
你可能会想8位的计数器很快就会溢出,是的,相对于简单计数器,我采用逻辑计数器。逻辑计数器的实现:
uint8_t LFULogIncr(uint8_t counter) {
if (counter == 255) return 255;
double r = (double)rand()/RAND_MAX;
double baseval = counter - LFU_INIT_VAL;
if (baseval < 0) baseval = 0;
double p = 1.0/(baseval*server.lfu_log_factor+1);
if (r < p) counter++;
return counter;
}
基本上计数器的较大者,更小的可能计数器会增加:上面的代码计算p
位于0~1之间,但计数器增长时会越来越小,位于0-1的随机数r
,只会但满足r<p
时计数器才会加一。
你可以配置计数器增长的速率,如果使用默认配置,会发生:
- 100次访问后,计数器=10;
- 1000次访问是是18;
- 10万次访问是142;
- 100万次访问后达到255,并不在继续增长;
下面,让我们看看计数器如果进行衰减。16位的被储存为unix时间戳保留到分钟级别,redis会随机扫描key填充到缓存池中,如果最后一个下降的时间大于N分钟前(可配置化),如果计数器的值很大就减半,或者对于值小的就直接简单减半。
这里又衍生出另外一个问题,就是新进来的key是需要有机会被保留的。由于LFU新增是得分都是0,非常容易被选举替换掉。在redis中,开始默认值为5。这个初始值是根据增长数据和减半算法来估算的。模拟显示得分小于5的key是首选。
代码和性能
上面描述的算法已经提交到一个非稳定版的redis分支上。我最初的测试显示:它在幂等模式下优于LRU算法,测试情况是每个key使用用相同数量的内存,然而真实世界的访问可能会有很大不同。时间和空间都可能改变得很不同,所以我会很开心去学习观察现实世界中LFU的性能如何,两种方式在redis实现中对性能的改变。
因此,新增了一个OBJECT FREQ
子命令,用于报告给定key的访问计数器,不仅仅能有效提观察一个计数器,而且还能调试LFU实现中的bug。
注意运行中切换LRU和LFU,刚开始会随机淘汰一些key,随着24bit不能匹配上,然而慢慢会适应。
++还有几种改进实现的可能。++
Ben Manes发给我这篇感兴趣的文章,描述了一种叫TinyLRU算法。
这篇文章包含一个非常厉害的观点:相比于记录当前对象的访问频率,让我们(概率性地)记录全部对象的访问频率,看到了,这种方式我们甚至可以拒绝新key,同样,我们相信这些key很可能得到很少的访问,所以一点也不需要淘汰,如果淘汰一个key意味着降低命中/未命中率。
我的感觉这种技术虽然很感兴趣GET/SET LFU缓存,但不适用与redis性质的数据服务器:用户期望keys被创建后至少存在几毫秒。拒绝key的创建似乎在redis上就是一种错误。
然而,redis保留了LFU信息,当一个key被覆盖时,举个例子:
SET oldkey some_new_value
24位的LFU计数器会从老的key复制到新对象中。
新的redis淘汰算法不稳定版本还有以下几个好消息:
1、跨DB策略。在过去的redis只是基于本地的选举,现在修复为所有策略,不仅仅是LRU。
2、易变ttl策略。基于key预期淘汰存活时间,如今就像其他策略中的使用缓存池。
3、在缓存池中重用了sds对象,性能更好。
这篇博客比我预期要长,但是我希望它反映出一个见解:在创新和对于已经存在的事物实现上,一种解决方案去解决一个特定问题,一个基础工具。由开发人员以正确的方式使用它。许多redis的用户把redis作为一个缓存的解决方案,因此提高淘汰策略这一块经常一次又一次被拿出来探讨