一、 实验目的
掌握基本的图象增强方法,观察图象增强的效果,加深对灰度直方图及直方图均衡化的理解,掌握直方图均衡化方法。
二、实验内容
将一张彩色图片转换成灰色图片,画灰度直方图和均衡化后的直方图,并将灰度图和均衡化后的图片对比。
三、实验原理
灰度直方图是将数字图像中的所有像素,按照灰度值的大小,统计其所出现的频度。通常,灰度直方图的横坐标表示灰度值,纵坐标为像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。
直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。
四、实验程序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%函数功能,画出图像的直方图,并对图像进行直方图均衡
%直接读图像abc.jpg,读到tuu中
%graydis是原始直方图各灰度级像素个数
%原始直方图graydispro,利用原始直方图计算原始累计直方图graydispro
%t[]计算和原始灰度对应的新的灰度t[],建立映射关系,t坐标代表原始的灰度,t[]代表对应原始坐标的新坐标
%new_graydis是统计新直方图各灰度级像素个数
%计算新的灰度直方图new_graydispro,利用新的直方图计算新的累计直方图new_graydispro
%计算直方图均衡后的新图new_tu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
close all
tuu=imread('abc.jpg'); %读入图片
tu=rgb2gray(tuu); %将彩色图片转换为灰度图
graydis=zeros(1,256); %设置矩阵大小
graydispro=zeros(1,256);
new_graydis=zeros(1,256);
new_graydispro=zeros(1,256);
[h w]=size(tu);
new_tu=zeros(h,w);
%计算原始直方图各灰度级像素个数graydis
for x=1:h
for y=1:w
graydis(1,tu(x,y))=graydis(1,tu(x,y))+1;
end
end
%计算原始直方图graydispro
graydispro=graydis./sum(graydis);
subplot(1,2,1);
plot(graydispro);
title('灰度直方图');
xlabel('灰度值');ylabel('像素的概率密度');
%计算原始累计直方图
for i=2:256
graydispro(1,i)=graydispro(1,i)+graydispro(1,i-1);
end
%计算和原始灰度对应的新的灰度t[],建立映射关系
for i=1:256
t(1,i)=floor(254*graydispro(1,i)+0.5);
end
%统计新直方图各灰度级像素个数new_graydis
for i=1:256
new_graydis(1,t(1,i)+1)=new_graydis(1,t(1,i)+1)+graydis(1,i);
end
%计算新的灰度直方图new_graydispro
new_graydispro=new_graydis./sum(new_graydis);
subplot(1,2,2);
plot(new_graydispro);
title('均衡化后的灰度直方图');
xlabel('灰度值');ylabel('像素的概率密度');
%计算直方图均衡后的新图new_tu
for x=1:h
for y=1:w
new_tu(x,y)=t(1,tu(x,y));
end
end
figure,imshow(tu,[]);
title('原图');
figure,imshow(new_tu,[]);
title('直方图均衡化后的图');
//////////////////////////////////////////////////////
另外两种代码:
代码
Matlab
下面的代码来自archiless,注释非常详细,适合初学。
|
另一段Matlab的代码,来自 直方图均衡化--图像增强
|