无论是服务端还是客户端,读取或者发送消息的时候,都需要考虑TCP底层的粘包/拆包机制。
TCP粘包/拆包
TCP是个“流”协议。
流:没有界限的一串数据。如同河里的流水,它们是连成一片的,其间并没有分界线。
TCP底层并不了解上层业务数据的具体含义,它会根据TCP缓冲区的实际情况进行包的划分,所以在业务上认为,一个完整的包可能会被TCP拆分成多个包进行发送,也有可能把多个小的包封装成一个大的数据包发送,这就是所谓的TCP粘包和拆包问题。
TCP粘包/拆包问题说明
假设客户端分别发送了两个数据包D1和D2给服务端,由于服务端一次读取到的字节数是不确定的,故可能存在以下4种情况。
(1)服务端分两次读取到了两个独立的数据包,分别是D1和D2,没有粘包和拆包;
(2)服务端一次接收到了两个数据包,D1和D2粘合在一起,被称为TCP粘包;
(3)服务端分两次读取到了两个数据包,第一次读取到了完整的D1包和D2包的部分内容,第二次读取到了D2包的剩余内容,这被称为TCP拆包;
(4)服务端分两次读取到了两个数据包,第一次读取到了D1包的部分内容D1_1,第二次读取到了D1包的剩余内容D1_2和D2包的整包。
如果此时服务端TCP接收滑窗非常小,而数据包D1和D2比较大,很有可能会发生第5种可能,即服务端分多次才能将D1和D2包接收完全,期间发生多次拆包。
TCP粘包/拆包发生的原因
(1)应用程序write写入的字节大小大于套接口发送缓冲区大小;
(2)进行MSS大小的TCP分段;
(3)以太网帧的payload大于MTU进行IP分片。
粘包问题的解决策略
由于底层的TCP无法理解上层的业务数据,所以在底层是无法保证数据包不被拆分和重组的,这个问题只能通过上层的应用协议栈设计来解决。
(1)消息定长,例如每个报文的大小为固定长度200字节,如果不够,空位补空格;
(2)在包尾增加回车换行符进行分割,例如FTP协议;
(3)将消息分为消息头和消息体,消息头中包含表示消息总长度(或者消息体长度)的字段,通常设计思路为消息头的第一个字段使用int32来表示消息的总长度;
(4)更复杂的应用层协议。
未考虑TCP粘包导致功能异常案例
运行结果
服务端运行结果表明它只接收到了两条消息,第一条包含57条“QUERY TIME ORDER”指令,第二条包含了43条“QUERY TIME ORDER”指令,总数正好是100条。我们期待的是收到100条消息,每条包含一条“QUERY TIME ORDER”指令。这说明发生了TCP粘包。
客户端运行结果:
Now is : BAD ORDER
按照设计初衷,客户端应该收到100条当前系统时间的消息,但实际上只收到了一条。这不难理解,因为服务端只收到了2条请求消息,所以实际服务端只发送了2条应答,由于请求消息不满足查询条件,所以返回了2条“BAD ORDER”应答消息。但是实际上客户端只收到了一条包含2条“BAD ORDER”指令的消息,说明服务端返回的应答消息也发生了粘包。
由于上面的例程没有考虑TCP的粘包/拆包,所以当发生TCP粘包时,我们的程序就不能正常工作。
利用LineBasedFrameDecoder
解决TCP粘包问题
为了解决TCP粘包/拆包导致的半包读写问题,Netty默认提供了多种编解码器用于处理半包,只要能熟练掌握这些类库的使用,TCP粘包问题从此会变得非常容易,你甚至不需要关心它们,这也是其他NIO框架和JDK原生的NIO API所无法匹敌的。
支持TCP粘包的TimeServer
支持TCP粘包的TimeClient
LineBasedFrameDecoder和StringDecoder的原理分析
LineBasedFrameDecoder:依次遍历ByteBuf中的可读字节,判断看是否有“\n”或者“\r\n”,如果有,就以此位置为结束位置,从可读索引到结束位置区间的字节就组成了一行。它是以换行符为结束标志的解码器,支持携带结束符或者不携带结束符两种解码方式,同时支持配置单行的最大长度。如果连续读取到最大长度后仍然没有发现换行符,就会抛出异常,同时忽略掉之前读到的异常码流。
StringDecoder:将接收到的对象转换成字符串,然后继续调用后面的Handler。LineBasedFrameDecoder+StringDecoder组合就是按行切换的文本解码器,它被设计用来支持TCP的粘包和拆包。