需要与外界进行数据交互传输的电子产品,为保证数据安全,一般会对明文进行加密处理。总的来说就是将真正需要传输的内容转换成无法理解的数据,接收方通过预先定义的方式还原,防止第三方截取篡改。比如欧盟对数据隐私有严格的条例GDPR标准。加密算法很多,对于简单的嵌入式产品,使用对称加密算法,即加密和解密使用相同的秘钥,方便快捷。AES就属于这种,虽然存在一定风险,但对于个人消费产品已满足安全需求。
不考虑算法实现本身,本文只针对应用进行说明。
1、秘钥类型
AES加密按秘钥的长度分为128位(比特)、192位和256位,一般记为AES-128、AES-192和AES-256。一般简短数据采用AES-128,也就是秘钥是16字节,少部分采用AES-256。
2、填充方式
待加密的明文以16字节分组进行加密,如果数据字节长度不是16的倍数,最后的一组则需要在有效数据后面进行填充,使得数据长度变为16字节,AES填充方式分为NoPadding、PKCS5(PKCS7)、ISO10126、Zeros。
NoPadding:不填充,那就只能加密长度为16倍数的数据,一般不使用
Zeros:补0,如果原数据长度恰好是16的倍数,也要补16个0
ISO10126: 最后一个字节是填充的字节数(包括最后一字节),其他全部填随机数
1 2 3 4 5 6 7 8 9 10 – x x x x x 6
填充6个字节
PKCS5(PKCS7):应用比较多,最后一组缺几个字节就填充几
1 2 3 4 5 6 7 8 9 10 – 6 6 6 6 6 6
前面10个字节,缺6字节才能为一组,填充6个6,如果恰好是16个字节,则填充16个16.
3、加密方式
加密方式分为五种:电码本模式(Electronic Codebook Book (ECB))、密码分组链接模式(Cipher Block Chaining (CBC))、计算器模式(Counter (CTR))、密码反馈模式(Cipher FeedBack (CFB))、输出反馈模式(Output FeedBack (OFB))。实际应用比较多的是ECB和CBC。
ECB:将明文按16字节分组,每组分别加密后拼接。
CBC:上面ECB缺点是明文内相同的明文块,最终的密文也是相同的,为了更好的隐藏明文信息,针对这个问题就有了CBC模式,每一小段明文先与初始块向量或者上一段的密文段进行异或运算后,再与密钥进行加密。
4、源码
一般采用AES-128,以PKCS7Padding填充,ECB或者CBC方式。针对这种应用参考范例如下。
aes.h
#ifndef _AES_H
#define _AES_H
/****************************************************************************
* Include Files
*****************************************************************************/
/*****************************************************************************
* Define
******************************************************************************/
//以bit为单位的密钥长度,只能为 128,192 和 256 三种
#define AES_KEY_LENGTH 128
//加解密模式
#define AES_MODE_ECB 0 // 电子密码本模式
#define AES_MODE_CBC 1 // 密码分组链接模式
#define AES_MODE AES_MODE_ECB // 配置加密模式
/*****************************************************************************
* Functions Define
******************************************************************************/
/******************************************************************************
// 函数名: AES_Init
// 描述: 初始化,在此执行扩展密钥操作。
// 输入参数: pKey -- 原始密钥,其长度必须为 AES_KEY_LENGTH/8 字节。
// 输出参数: 无。
// 返回值: 无。
******************************************************************************/
extern void AES_Init(const void *pKey);
/******************************************************************************
// 函数名: AES_Encrypt
// 描述: 加密数据
// 输入参数: pPlainText -- 明文,即需加密的数据,其长度为nDataLen字节。
// nDataLen -- 数据长度,以字节为单位,必须为AES_KEY_LENGTH/8的整倍数。
// pIV -- 初始化向量,如果使用ECB模式,可设为NULL。
// 输出参数: pCipherText -- 密文,即由明文加密后的数据,可以与pPlainText相同。
// 返回值: 无。
******************************************************************************/
void AES_Encrypt(const unsigned char *pPlainText, unsigned char *pCipherText,
unsigned int nDataLen, const unsigned char *pIV);
/******************************************************************************
// 函数名: AES_Decrypt
// 描述: 解密数据
// 输入参数: pCipherText -- 密文,即需解密的数据,其长度为nDataLen字节。
// nDataLen -- 数据长度,以字节为单位,必须为AES_KEY_LENGTH/8的整倍数。
// pIV -- 初始化向量,如果使用ECB模式,可设为NULL。
// 输出参数: pPlainText -- 明文,即由密文解密后的数据,可以与pCipherText相同。
// 返回值: 无。
******************************************************************************/
void AES_Decrypt(unsigned char *pPlainText, const unsigned char *pCipherText,
unsigned int nDataLen, const unsigned char *pIV);
/*****************************************************************************
// 函数名: AES_add_pkcs7Padding
// 描述: PKCS7Padding填充补齐
// 输入参数: input -- 后面最多预留16个字节空间用于存放填充值
// len -- 数据的长度
// 输出参数: input -- 添加填充码后的数据
// 返回值: 填充后的长度
*****************************************************************************/
unsigned int AES_add_pkcs7Padding(unsigned char *input, unsigned int len);
/*****************************************************************************
// 函数名: AES_delete_pkcs7Padding
// 描述: PKCS7Padding填充密文解密后剔除填充值
// 输入参数: input -- 解密后的数据
// len -- 数据的长度
// 输出参数: input -- 删除填充码后的数据
// 返回值: 删除后的实际有效数据长度,为0表示传入的数据异常
*****************************************************************************/
unsigned int AES_delete_pkcs7Padding(unsigned char *input, unsigned int len);
#endif /* _AES_H */
aes.c
/****************************************************************************
* Include Files
*****************************************************************************/
#include "aes.h"
/*****************************************************************************
* Define
******************************************************************************/
#define Nk (AES_KEY_LENGTH / 32) //以“字”(4字节)为单位的密钥长度
#define Nb 4 // 以“字”(4字节)为单位的加解密数据块大小,固定为4
// Nr:加密的轮数
#if AES_KEY_LENGTH == 128
#define Nr 10
#elif AES_KEY_LENGTH == 192
#define Nr 12
#elif AES_KEY_LENGTH == 256
#define Nr 14
#else
#error AES_KEY_LENGTH must be 128, 192 or 256
#endif
// GF(28) 多项式
#define BPOLY 0x1B // Lower 8 BOOLs of (x^8 + x^4 + x^3 + x + 1), ie. (x^4 + x^3 + x + 1).
/*****************************************************************************
* Local variable
*****************************************************************************/
// AES子密钥表,当密钥长度为128位时,占用176字节空间
static unsigned char g_roundKeyTable[4*Nb*(Nr+1)];
// 加密用的SBox
static const unsigned char SBox[256] =
{
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
// 解密用的SBox
static const unsigned char InvSBox[256] =
{
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
/*****************************************************************************
* Local Functions
******************************************************************************/
/*****************************************************************************
// 函数名: RotationWord
// 描述: 对一个“字”数据进行循环右移。
// 输入参数: pWord -- 要右移的4字节数据。
// 输出参数: pWord -- 右移后的4字节数据。
// 返回值: 无。
*****************************************************************************/
static void RotationWord(unsigned char *pWord)
{
unsigned char temp = pWord[0];
pWord[0] = pWord[1];
pWord[1] = pWord[2];
pWord[2] = pWord[3];
pWord[3] = temp;
}
/*****************************************************************************
// 函数名: XorBytes
// 描述: 批量异或两组数据。
// 输入参数: pData1 -- 要异或的第一组数据。
// pData1 -- 要异或的第二组数据。
// nCount -- 要异或的数据长度。
// 输出参数: pData1 -- 异或后的结果。
// 返回值: 无。
*****************************************************************************/
static void XorBytes(unsigned char *pData1, const unsigned char *pData2, unsigned char nCount)
{
unsigned char i;
for(i = 0; i < nCount; i++)
{
pData1[i] ^= pData2[i];
}
}
/*****************************************************************************
// 函数名: AddRoundKey
// 描述: 把 中间状态数据 加上(异或)子密钥,数据长度为16字节。
// 输入参数: pState -- 状态数据。
// pRoundKey -- 子密钥数据。
// 输出参数: pState -- 加上子密钥后的状态数据。
// 返回值: 无。
*****************************************************************************/
static void AddRoundKey(unsigned char *pState, const unsigned char *pRoundKey)
{
XorBytes(pState, pRoundKey, 4 * Nb);
}
// AddRoundKey的宏形式,比函数形式可以节省4字节的data数据
//#define AddRoundKey(pState, pRoundKey) \
// XorBytes((pState), (pRoundKey), 4*Nb)
/*****************************************************************************
// 函数名: SubBytes
// 描述: 通过S盒子置换状态数据。
// 输入参数: pState -- 状态数据。
// nCount -- 状态数据长度。
// bInvert -- 是否使用反向S盒子(解密时使用)。
// 输出参数: pState -- 置换后的状态数据。
// 返回值: 无。
*****************************************************************************/
static void SubBytes(unsigned char *pState, unsigned char nCount, unsigned char bInvert)
{
unsigned char i;
const unsigned char *pSBox = bInvert ? InvSBox : SBox;
for(i = 0; i < nCount; i++)
{
pState[i] = pSBox[pState[i]];
}
}
/*****************************************************************************
// 函数名: ShiftRows
// 描述: 把状态数据移行。
// 输入参数: pState -- 状态数据。
// bInvert -- 是否反向移行(解密时使用)。
// 输出参数: pState -- 移行后的状态数据。
// 返回值: 无。
*****************************************************************************/
static void ShiftRows(unsigned char *pState, unsigned char bInvert)
{
// 注意:状态数据以列形式存放!
unsigned char r; // row, 行
unsigned char c; // column,列
unsigned char temp;
unsigned char rowData[4];
for(r = 1; r < 4; r++)
{
// 备份一行数据
for(c = 0; c < 4; c++)
{
rowData[c] = pState[r + 4*c];
}
temp = bInvert ? (4 - r) : r;
for(c = 0; c < 4; c++)
{
pState[r + 4*c] = rowData[(c + temp) % 4];
}
}
}
/*****************************************************************************
// 函数名: GfMultBy02
// 描述: 在GF(28)域的 乘2 运算。
// 输入参数: num -- 乘数。
// 输出参数: 无。
// 返回值: num乘以2的结果。
*****************************************************************************/
static unsigned char GfMultBy02(unsigned char num)
{
if((num & 0x80) == 0)
{
num = num << 1;
}
else
{
num = (num << 1) ^ BPOLY;
}
return num;
}
/*****************************************************************************
// 函数名: MixColumns
// 描述: 混合状态各列数据。
// 输入参数: pState -- 状态数据。
// bInvert -- 是否反向混合(解密时使用)。
// 输出参数: pState -- 混合列后的状态数据。
// 返回值: 无。
*****************************************************************************/
static void MixColumns(unsigned char *pState, unsigned char bInvert)
{
unsigned char i;
unsigned char temp;
unsigned char a0Pa2_M4; // 4(a0 + a2)
unsigned char a1Pa3_M4; // 4(a1 + a3)
unsigned char result[4];
for(i = 0; i < 4; i++, pState += 4)
{
temp = pState[0] ^ pState[1] ^ pState[2] ^ pState[3];
result[0] = temp ^ pState[0] ^ GfMultBy02((unsigned char)(pState[0] ^ pState[1]));
result[1] = temp ^ pState[1] ^ GfMultBy02((unsigned char)(pState[1] ^ pState[2]));
result[2] = temp ^ pState[2] ^ GfMultBy02((unsigned char)(pState[2] ^ pState[3]));
result[3] = temp ^ pState[3] ^ GfMultBy02((unsigned char)(pState[3] ^ pState[0]));
if(bInvert)
{
a0Pa2_M4 = GfMultBy02(GfMultBy02((unsigned char)(pState[0] ^ pState[2])));
a1Pa3_M4 = GfMultBy02(GfMultBy02((unsigned char)(pState[1] ^ pState[3])));
temp = GfMultBy02((unsigned char)(a0Pa2_M4 ^ a1Pa3_M4));
result[0] ^= temp ^ a0Pa2_M4;
result[1] ^= temp ^ a1Pa3_M4;
result[2] ^= temp ^ a0Pa2_M4;
result[3] ^= temp ^ a1Pa3_M4;
}
memcpy(pState, result, 4);
}
}
/*****************************************************************************
// 函数名: BlockEncrypt
// 描述: 对单块数据加密。
// 输入参数: pState -- 状态数据。
// 输出参数: pState -- 加密后的状态数据。
// 返回值: 无。
*****************************************************************************/
static void BlockEncrypt(unsigned char *pState)
{
unsigned char i;
AddRoundKey(pState, g_roundKeyTable);
for(i = 1; i <= Nr; i++) // i = [1, Nr]
{
SubBytes(pState, 4 * Nb, 0);
ShiftRows(pState, 0);
if(i != Nr)
{
MixColumns(pState, 0);
}
AddRoundKey(pState, &g_roundKeyTable[4*Nb*i]);
}
}
/*****************************************************************************
// 函数名: BlockDecrypt
// 描述: 对单块数据解密。
// 输入参数: pState -- 状态数据。
// 输出参数: pState -- 解密后的状态数据。
// 返回值: 无。
*****************************************************************************/
static void BlockDecrypt(unsigned char *pState)
{
unsigned char i;
AddRoundKey(pState, &g_roundKeyTable[4*Nb*Nr]);
for(i = Nr; i > 0; i--) // i = [Nr, 1]
{
ShiftRows(pState, 1);
SubBytes(pState, 4 * Nb, 1);
AddRoundKey(pState, &g_roundKeyTable[4*Nb*(i-1)]);
if(i != 1)
{
MixColumns(pState, 1);
}
}
}
/*****************************************************************************
* Global Functions
******************************************************************************/
/*****************************************************************************
// 函数名: AES_Init
// 描述: 初始化,在此执行扩展密钥操作。
// 输入参数: pKey -- 原始密钥,其长度必须为 AES_KEY_LENGTH/8 字节。
// 输出参数: 无。
// 返回值: 无。
*****************************************************************************/
void AES_Init(const void *pKey)
{
// 扩展密钥
unsigned char i;
unsigned char *pRoundKey;
unsigned char Rcon[4] = {0x01, 0x00, 0x00, 0x00};
memcpy(g_roundKeyTable, pKey, 4 * Nk);
pRoundKey = &g_roundKeyTable[4*Nk];
for(i = Nk; i < Nb*(Nr + 1); pRoundKey += 4, i++)
{
memcpy(pRoundKey, pRoundKey - 4, 4);
if(i % Nk == 0)
{
RotationWord(pRoundKey);
SubBytes(pRoundKey, 4, 0);
XorBytes(pRoundKey, Rcon, 4);
Rcon[0] = GfMultBy02(Rcon[0]);
}
else if(Nk > 6 && i % Nk == Nb)
{
SubBytes(pRoundKey, 4, 0);
}
XorBytes(pRoundKey, pRoundKey - 4 * Nk, 4);
}
}
/*****************************************************************************
// 函数名: AES_Encrypt
// 描述: 加密数据
// 输入参数: pPlainText -- 明文,即需加密的数据,其长度为nDataLen字节。
// nDataLen -- 数据长度,以字节为单位,必须为AES_KEY_LENGTH/8的整倍数。
// pIV -- 初始化向量,如果使用ECB模式设为NULL。
// 输出参数: pCipherText -- 密文,即由明文加密后的数据,可以与pPlainText相同。
// 返回值: 无。
*****************************************************************************/
void AES_Encrypt(const unsigned char *pPlainText, unsigned char *pCipherText,
unsigned int nDataLen, const unsigned char *pIV)
{
unsigned int i;
if(pPlainText != pCipherText)
{
memcpy(pCipherText, pPlainText, nDataLen);
}
for(i = nDataLen / (4 * Nb); i > 0 ; i--, pCipherText += 4 * Nb)
{
#if AES_MODE == AES_MODE_CBC
XorBytes(pCipherText, pIV, 4 * Nb);
#endif
BlockEncrypt(pCipherText);
pIV = pCipherText;
}
}
/*****************************************************************************
// 函数名: AES_Decrypt
// 描述: 解密数据
// 输入参数: pCipherText -- 密文,即需解密的数据,其长度为nDataLen字节。
// nDataLen -- 数据长度,以字节为单位,必须为AES_KEY_LENGTH/8的整倍数。
// pIV -- 初始化向量,如果使用ECB模式设为NULL。
// 输出参数: pPlainText -- 明文,即由密文解密后的数据,可以与pCipherText相同。
// 返回值: 无。
*****************************************************************************/
void AES_Decrypt(unsigned char *pPlainText, const unsigned char *pCipherText,
unsigned int nDataLen, const unsigned char *pIV)
{
unsigned int i;
if(pPlainText != pCipherText)
{
memcpy(pPlainText, pCipherText, nDataLen);
}
// 从最后一块数据开始解密,这样不用开辟空间来保存IV
pPlainText += nDataLen - 4 * Nb;
for(i = nDataLen / (4 * Nb); i > 0 ; i--, pPlainText -= 4 * Nb)
{
BlockDecrypt(pPlainText);
#if AES_MODE == AES_MODE_CBC
if(i == 1)
{
// 最后一块数据
XorBytes(pPlainText, pIV, 4 * Nb);
}
else
{
XorBytes(pPlainText, pPlainText - 4 * Nb, 4 * Nb);
}
#endif
}
}
/*****************************************************************************
// 函数名: AES_add_pkcs7Padding
// 描述: PKCS7Padding填充补齐
// 输入参数: input -- 后面最多预留16个字节空间用于存放填充值
// len -- 数据的长度
// 输出参数: input -- 添加填充码后的数据
// 返回值: 填充后的长度
*****************************************************************************/
unsigned int AES_add_pkcs7Padding(unsigned char *input, unsigned int len)
{
unsigned int i, end, padd_len;
unsigned int reminder = len % 16;
unsigned int block = len / 16;
unsigned int start = len;//开始补码的地址
padd_len = len;
if(reminder != 0) //需要补足为16的整数倍
{
start = len;
end = (block + 1) * 16;
for(i = start; i < end; i++)
{
input[i] = 16 - reminder;
padd_len++;
}
}
else
{
end = start + 16;
for(i = start; i < end; i++)
{
input[i] = 16;
padd_len++;
}
}
return padd_len;
}
/*****************************************************************************
// 函数名: AES_delete_pkcs7Padding
// 描述: PKCS7Padding填充密文解密后剔除填充值
// 输入参数: input -- 解密后的数据
// len -- 数据的长度
// 输出参数: input -- 删除填充码后的数据
// 返回值: 删除后的实际有效数据长度,为0表示传入的数据异常
*****************************************************************************/
unsigned int AES_delete_pkcs7Padding(unsigned char *input, unsigned int len)
{
unsigned char i, last;
if((input == 0) || ((len & 0x0F) != 0))
{
return 0;
}
last = input[len - 1];
for(i = len - last; i < len; i++)
{
if(input[i] != last)
{
return 0;
}
}
return len - last;
}
测试代码如下:
main.c
#include "aes.h"
#include "stdio.h"
#include "string.h"
void log(char *head,unsigned char *data,unsigned char len)
{
unsigned char i;
printf("%s:",head);
for(i=0;i<len;i++)
{
printf("%02X ",data[i]);
}
printf("\r\n");
}
int main(int argc, char *argv[])
{
//秘钥
unsigned char key[16]={0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x41,0x42,0x43,0x44,0x45,0x46};
//明文 10Bytes
unsigned char source[10]={0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30};
unsigned char temp[16]={0};
unsigned char ret;
printf("AES-128 pkcs7 ECB test\r\n\r\n");
log("KEY ",key,16);
AES_Init(key);
memcpy(temp,source,10);
log("source",key,10);
ret=AES_add_pkcs7Padding(temp, 10);
log("padd ",temp,ret);
AES_Encrypt(temp, temp,ret, NULL);
log("encode",temp,ret);
AES_Decrypt(temp, temp,ret, NULL);
log("decode",temp,ret);
ret=AES_delete_pkcs7Padding(temp, ret);
log("source",temp,ret);
return 0;
}
运行后输出
AES-128 pkcs7 ECB test
KEY :31 32 33 34 35 36 37 38 39 30 41 42 43 44 45 46
source:31 32 33 34 35 36 37 38 39 30
padd :31 32 33 34 35 36 37 38 39 30 06 06 06 06 06 06
encode:BB 96 90 2E CA D7 C7 26 98 95 08 7D FF 39 C5 F7
decode:31 32 33 34 35 36 37 38 39 30 06 06 06 06 06 06
source:31 32 33 34 35 36 37 38 39 30
其他(转者注)
在线AES加密解密工具:【the-x】 【ip33】
Github上面一个项目:https://github.com/kokke/tiny-AES-c
aes.h
#ifndef _AES_H_
#define _AES_H_
#include <stdint.h>
// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES encryption in CBC-mode of operation.
// CTR enables encryption in counter-mode.
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
#ifndef CTR
#define CTR 1
#endif
#define AES128 1
//#define AES192 1
//#define AES256 1
#define AES_BLOCKLEN 16 //Block length in bytes AES is 128b block only
#if defined(AES256) && (AES256 == 1)
#define AES_KEYLEN 32
#define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
#define AES_KEYLEN 24
#define AES_keyExpSize 208
#else
#define AES_KEYLEN 16 // Key length in bytes
#define AES_keyExpSize 176
#endif
struct AES_ctx
{
uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
uint8_t Iv[AES_BLOCKLEN];
#endif
};
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
#endif
#if defined(ECB) && (ECB == 1)
// buffer size is exactly AES_BLOCKLEN bytes;
// you need only AES_init_ctx as IV is not used in ECB
// NB: ECB is considered insecure for most uses
void AES_ECB_encrypt(struct AES_ctx* ctx, uint8_t* buf);
void AES_ECB_decrypt(struct AES_ctx* ctx, uint8_t* buf);
#endif // #if defined(ECB) && (ECB == !)
#if defined(CBC) && (CBC == 1)
// buffer size MUST be mutile of AES_BLOCKLEN;
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
// Same function for encrypting as for decrypting.
// IV is incremented for every block, and used after encryption as XOR-compliment for output
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
#endif // #if defined(CTR) && (CTR == 1)
#endif //_AES_H_
test.c
#include <stdio.h>
#include <string.h>
#include <stdint.h>
// Enable ECB, CTR and CBC mode. Note this can be done before including aes.h or at compile-time.
// E.g. with GCC by using the -D flag: gcc -c aes.c -DCBC=0 -DCTR=1 -DECB=1
#define CBC 1
#define CTR 1
#define ECB 1
#include "aes.h"
static void phex(uint8_t* str);
static int test_encrypt_cbc(void);
static int test_decrypt_cbc(void);
static int test_encrypt_ctr(void);
static int test_decrypt_ctr(void);
static int test_encrypt_ecb(void);
static int test_decrypt_ecb(void);
static void test_encrypt_ecb_verbose(void);
int main(void)
{
int exit;
#if defined(AES256)
printf("\nTesting AES256\n\n");
#elif defined(AES192)
printf("\nTesting AES192\n\n");
#elif defined(AES128)
printf("\nTesting AES128\n\n");
#else
printf("You need to specify a symbol between AES128, AES192 or AES256. Exiting");
return 0;
#endif
exit = test_encrypt_cbc() + test_decrypt_cbc() +
test_encrypt_ctr() + test_decrypt_ctr() +
test_decrypt_ecb() + test_encrypt_ecb();
test_encrypt_ecb_verbose();
return exit;
}
// prints string as hex
static void phex(uint8_t* str)
{
#if defined(AES256)
uint8_t len = 32;
#elif defined(AES192)
uint8_t len = 24;
#elif defined(AES128)
uint8_t len = 16;
#endif
unsigned char i;
for (i = 0; i < len; ++i)
printf("%.2x", str[i]);
printf("\n");
}
static void test_encrypt_ecb_verbose(void)
{
// Example of more verbose verification
uint8_t i;
// 128bit key
uint8_t key[16] = { (uint8_t) 0x2b, (uint8_t) 0x7e, (uint8_t) 0x15, (uint8_t) 0x16, (uint8_t) 0x28, (uint8_t) 0xae, (uint8_t) 0xd2, (uint8_t) 0xa6, (uint8_t) 0xab, (uint8_t) 0xf7, (uint8_t) 0x15, (uint8_t) 0x88, (uint8_t) 0x09, (uint8_t) 0xcf, (uint8_t) 0x4f, (uint8_t) 0x3c };
// 512bit text
uint8_t plain_text[64] = { (uint8_t) 0x6b, (uint8_t) 0xc1, (uint8_t) 0xbe, (uint8_t) 0xe2, (uint8_t) 0x2e, (uint8_t) 0x40, (uint8_t) 0x9f, (uint8_t) 0x96, (uint8_t) 0xe9, (uint8_t) 0x3d, (uint8_t) 0x7e, (uint8_t) 0x11, (uint8_t) 0x73, (uint8_t) 0x93, (uint8_t) 0x17, (uint8_t) 0x2a,
(uint8_t) 0xae, (uint8_t) 0x2d, (uint8_t) 0x8a, (uint8_t) 0x57, (uint8_t) 0x1e, (uint8_t) 0x03, (uint8_t) 0xac, (uint8_t) 0x9c, (uint8_t) 0x9e, (uint8_t) 0xb7, (uint8_t) 0x6f, (uint8_t) 0xac, (uint8_t) 0x45, (uint8_t) 0xaf, (uint8_t) 0x8e, (uint8_t) 0x51,
(uint8_t) 0x30, (uint8_t) 0xc8, (uint8_t) 0x1c, (uint8_t) 0x46, (uint8_t) 0xa3, (uint8_t) 0x5c, (uint8_t) 0xe4, (uint8_t) 0x11, (uint8_t) 0xe5, (uint8_t) 0xfb, (uint8_t) 0xc1, (uint8_t) 0x19, (uint8_t) 0x1a, (uint8_t) 0x0a, (uint8_t) 0x52, (uint8_t) 0xef,
(uint8_t) 0xf6, (uint8_t) 0x9f, (uint8_t) 0x24, (uint8_t) 0x45, (uint8_t) 0xdf, (uint8_t) 0x4f, (uint8_t) 0x9b, (uint8_t) 0x17, (uint8_t) 0xad, (uint8_t) 0x2b, (uint8_t) 0x41, (uint8_t) 0x7b, (uint8_t) 0xe6, (uint8_t) 0x6c, (uint8_t) 0x37, (uint8_t) 0x10 };
// print text to encrypt, key and IV
printf("ECB encrypt verbose:\n\n");
printf("plain text:\n");
for (i = (uint8_t) 0; i < (uint8_t) 4; ++i)
{
phex(plain_text + i * (uint8_t) 16);
}
printf("\n");
printf("key:\n");
phex(key);
printf("\n");
// print the resulting cipher as 4 x 16 byte strings
printf("ciphertext:\n");
struct AES_ctx ctx;
AES_init_ctx(&ctx, key);
for (i = 0; i < 4; ++i)
{
AES_ECB_encrypt(&ctx, plain_text + (i * 16));
phex(plain_text + (i * 16));
}
printf("\n");
}
static int test_encrypt_ecb(void)
{
#if defined(AES256)
uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t out[] = { 0xf3, 0xee, 0xd1, 0xbd, 0xb5, 0xd2, 0xa0, 0x3c, 0x06, 0x4b, 0x5a, 0x7e, 0x3d, 0xb1, 0x81, 0xf8 };
#elif defined(AES192)
uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t out[] = { 0xbd, 0x33, 0x4f, 0x1d, 0x6e, 0x45, 0xf2, 0x5f, 0xf7, 0x12, 0xa2, 0x14, 0x57, 0x1f, 0xa5, 0xcc };
#elif defined(AES128)
uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t out[] = { 0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60, 0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97 };
#endif
uint8_t in[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a };
struct AES_ctx ctx;
AES_init_ctx(&ctx, key);
AES_ECB_encrypt(&ctx, in);
printf("ECB encrypt: ");
if (0 == memcmp((char*) out, (char*) in, 16)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}
static int test_decrypt_cbc(void)
{
#if defined(AES256)
uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t in[] = { 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,
0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,
0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,
0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b };
#elif defined(AES192)
uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t in[] = { 0x4f, 0x02, 0x1d, 0xb2, 0x43, 0xbc, 0x63, 0x3d, 0x71, 0x78, 0x18, 0x3a, 0x9f, 0xa0, 0x71, 0xe8,
0xb4, 0xd9, 0xad, 0xa9, 0xad, 0x7d, 0xed, 0xf4, 0xe5, 0xe7, 0x38, 0x76, 0x3f, 0x69, 0x14, 0x5a,
0x57, 0x1b, 0x24, 0x20, 0x12, 0xfb, 0x7a, 0xe0, 0x7f, 0xa9, 0xba, 0xac, 0x3d, 0xf1, 0x02, 0xe0,
0x08, 0xb0, 0xe2, 0x79, 0x88, 0x59, 0x88, 0x81, 0xd9, 0x20, 0xa9, 0xe6, 0x4f, 0x56, 0x15, 0xcd };
#elif defined(AES128)
uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t in[] = { 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d,
0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee, 0x95, 0xdb, 0x11, 0x3a, 0x91, 0x76, 0x78, 0xb2,
0x73, 0xbe, 0xd6, 0xb8, 0xe3, 0xc1, 0x74, 0x3b, 0x71, 0x16, 0xe6, 0x9e, 0x22, 0x22, 0x95, 0x16,
0x3f, 0xf1, 0xca, 0xa1, 0x68, 0x1f, 0xac, 0x09, 0x12, 0x0e, 0xca, 0x30, 0x75, 0x86, 0xe1, 0xa7 };
#endif
uint8_t iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
uint8_t out[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 };
// uint8_t buffer[64];
struct AES_ctx ctx;
AES_init_ctx_iv(&ctx, key, iv);
AES_CBC_decrypt_buffer(&ctx, in, 64);
printf("CBC decrypt: ");
if (0 == memcmp((char*) out, (char*) in, 64)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}
static int test_encrypt_cbc(void)
{
#if defined(AES256)
uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t out[] = { 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,
0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,
0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,
0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b };
#elif defined(AES192)
uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t out[] = { 0x4f, 0x02, 0x1d, 0xb2, 0x43, 0xbc, 0x63, 0x3d, 0x71, 0x78, 0x18, 0x3a, 0x9f, 0xa0, 0x71, 0xe8,
0xb4, 0xd9, 0xad, 0xa9, 0xad, 0x7d, 0xed, 0xf4, 0xe5, 0xe7, 0x38, 0x76, 0x3f, 0x69, 0x14, 0x5a,
0x57, 0x1b, 0x24, 0x20, 0x12, 0xfb, 0x7a, 0xe0, 0x7f, 0xa9, 0xba, 0xac, 0x3d, 0xf1, 0x02, 0xe0,
0x08, 0xb0, 0xe2, 0x79, 0x88, 0x59, 0x88, 0x81, 0xd9, 0x20, 0xa9, 0xe6, 0x4f, 0x56, 0x15, 0xcd };
#elif defined(AES128)
uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t out[] = { 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d,
0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee, 0x95, 0xdb, 0x11, 0x3a, 0x91, 0x76, 0x78, 0xb2,
0x73, 0xbe, 0xd6, 0xb8, 0xe3, 0xc1, 0x74, 0x3b, 0x71, 0x16, 0xe6, 0x9e, 0x22, 0x22, 0x95, 0x16,
0x3f, 0xf1, 0xca, 0xa1, 0x68, 0x1f, 0xac, 0x09, 0x12, 0x0e, 0xca, 0x30, 0x75, 0x86, 0xe1, 0xa7 };
#endif
uint8_t iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
uint8_t in[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 };
struct AES_ctx ctx;
AES_init_ctx_iv(&ctx, key, iv);
AES_CBC_encrypt_buffer(&ctx, in, 64);
printf("CBC encrypt: ");
if (0 == memcmp((char*) out, (char*) in, 64)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}
static int test_xcrypt_ctr(const char* xcrypt);
static int test_encrypt_ctr(void)
{
return test_xcrypt_ctr("encrypt");
}
static int test_decrypt_ctr(void)
{
return test_xcrypt_ctr("decrypt");
}
static int test_xcrypt_ctr(const char* xcrypt)
{
#if defined(AES256)
uint8_t key[32] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t in[64] = { 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6 };
#elif defined(AES192)
uint8_t key[24] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t in[64] = { 0x1a, 0xbc, 0x93, 0x24, 0x17, 0x52, 0x1c, 0xa2, 0x4f, 0x2b, 0x04, 0x59, 0xfe, 0x7e, 0x6e, 0x0b,
0x09, 0x03, 0x39, 0xec, 0x0a, 0xa6, 0xfa, 0xef, 0xd5, 0xcc, 0xc2, 0xc6, 0xf4, 0xce, 0x8e, 0x94,
0x1e, 0x36, 0xb2, 0x6b, 0xd1, 0xeb, 0xc6, 0x70, 0xd1, 0xbd, 0x1d, 0x66, 0x56, 0x20, 0xab, 0xf7,
0x4f, 0x78, 0xa7, 0xf6, 0xd2, 0x98, 0x09, 0x58, 0x5a, 0x97, 0xda, 0xec, 0x58, 0xc6, 0xb0, 0x50 };
#elif defined(AES128)
uint8_t key[16] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t in[64] = { 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee };
#endif
uint8_t iv[16] = { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff };
uint8_t out[64] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 };
struct AES_ctx ctx;
AES_init_ctx_iv(&ctx, key, iv);
AES_CTR_xcrypt_buffer(&ctx, in, 64);
printf("CTR %s: ", xcrypt);
if (0 == memcmp((char *) out, (char *) in, 64)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}
static int test_decrypt_ecb(void)
{
#if defined(AES256)
uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t in[] = { 0xf3, 0xee, 0xd1, 0xbd, 0xb5, 0xd2, 0xa0, 0x3c, 0x06, 0x4b, 0x5a, 0x7e, 0x3d, 0xb1, 0x81, 0xf8 };
#elif defined(AES192)
uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t in[] = { 0xbd, 0x33, 0x4f, 0x1d, 0x6e, 0x45, 0xf2, 0x5f, 0xf7, 0x12, 0xa2, 0x14, 0x57, 0x1f, 0xa5, 0xcc };
#elif defined(AES128)
uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t in[] = { 0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60, 0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97 };
#endif
uint8_t out[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a };
struct AES_ctx ctx;
AES_init_ctx(&ctx, key);
AES_ECB_decrypt(&ctx, in);
printf("ECB decrypt: ");
if (0 == memcmp((char*) out, (char*) in, 16)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}