本文主要分析 SpringCloud 中 Ribbon 负载均衡流程和原理。

    SpringCloud版本为:Edgware.RELEASE。



一.时序图

    和以前一样,先把图贴出来,直观一点:

spring cloud task源码 springcloud源码分析视频_Server

spring cloud task源码 springcloud源码分析视频_python_02





二.源码分析

    我们先从 contoller 里面看如何使用 Ribbon 来负载均衡的:

@GetMapping("/user/{id}")
  public User findById(@PathVariable Long id) {
    //return this.restTemplate.getForObject("http://192.168.2.110:8001/" + id, User.class);
    return this.restTemplate.getForObject("http://microservice-provider-user/" + id, User.class);
  }

    可以看到,在整合 Ribbon 之前,请求Rest是通过IP端口直接请求。整合 Ribbon 之后,请求的地址改成了 http://applicationName ,官方取名为虚拟主机名(virtual host name),当 Ribbon 和 Eureka 配合使用时,会自动将虚拟主机名转换为微服务的实际IP地址,我们后面会分析这个过程。

    首先从 RestTemplate#getForObject 开始:

public <T> T getForObject(String url, Class<T> responseType, Object... uriVariables) throws 
    RestClientException {
        // 设置RequestCallback的返回类型responseType
		RequestCallback requestCallback = acceptHeaderRequestCallback(responseType);
        // 实例化responseExtractor
		HttpMessageConverterExtractor<T> responseExtractor =
				new HttpMessageConverterExtractor<T>(responseType, getMessageConverters(), logger);
		return execute(url, HttpMethod.GET, requestCallback, responseExtractor, uriVariables);
	}

    接着执行到 RestTemplate 的 execute,主要是拼装URI,如果存在baseUrl,则插入baseUrl。拼装好后,进入实际"执行"请求的地方:

public <T> T execute(String url, HttpMethod method, RequestCallback requestCallback,
			ResponseExtractor<T> responseExtractor, Object... uriVariables) throws 
    RestClientException {
        // 组装 URI
		URI expanded = getUriTemplateHandler().expand(url, uriVariables);
        // 实际"执行"的地方
		return doExecute(expanded, method, requestCallback, responseExtractor);
	}

    RestTemplate#doExecute,实际“执行”请求的地方,执行超过后,返回 response:

protected <T> T doExecute(URI url, HttpMethod method, RequestCallback requestCallback,
			ResponseExtractor<T> responseExtractor) throws RestClientException {
		ClientHttpResponse response = null;
		try {
            // 实例化请求,url为请求地址,method为GET
			ClientHttpRequest request = createRequest(url, method);
			if (requestCallback != null) {// AcceptHeaderRequestCallback
				requestCallback.doWithRequest(request);
			}
            // 实际处理请求的地方
			response = request.execute();
            // 处理response,记录日志和调用对应的错误处理器
			handleResponse(url, method, response);
			if (responseExtractor != null) {// 使用前面的HttpMessageConverterExtractor从Response里面抽取数据
				return responseExtractor.extractData(response);
			}
			else {
				return null;
			}
		}
		......
	}

    到了请求被执行的地方,AbstractClientHttpRequest#execute,跳转到 executeInternal:

public final ClientHttpResponse execute() throws IOException {
        // 断言请求还没被执行过
		assertNotExecuted();
        // 跳转到 executeInternal 处理请求
		ClientHttpResponse result = executeInternal(this.headers);
        // 标记请求为已经执行过
		this.executed = true;
		return result;
	}

    AbstractBufferingClientHttpRequest#executeInternal,AbstractBufferingClientHttpRequest是AbstractClientHttpRequest的子抽象类,作用是缓存output,使用了一个字节数组输出流:

protected ClientHttpResponse executeInternal(HttpHeaders headers) throws IOException {
        // 首次进来,bytes内容为空
		byte[] bytes = this.bufferedOutput.toByteArray();
		if (headers.getContentLength() < 0) {
            // 设置 Content-Length 为 1
			headers.setContentLength(bytes.length);
		}
        // 模板方法,跳转到了实现类中的方法,InterceptingClientHttpRequest#executeInternal
		ClientHttpResponse result = executeInternal(headers, bytes);
        // 拿到结果后,清空缓存
		this.bufferedOutput = null;
		return result;
	}

    executeInternal是一个抽象方法,跳转到了其实现类InterceptingClientHttpRequest#executeInternal:

protected final ClientHttpResponse executeInternal(HttpHeaders headers, byte[] bufferedOutput) 
    throws IOException {
		InterceptingRequestExecution requestExecution = new InterceptingRequestExecution();
        // InterceptingRequestExecution是一个内部类
		return requestExecution.execute(this, bufferedOutput);
	}
    // 内部类,负责执行请求
    private class InterceptingRequestExecution implements ClientHttpRequestExecution {
		private final Iterator<ClientHttpRequestInterceptor> iterator;// 所有HttpRequest的拦截器
		public InterceptingRequestExecution() {
			this.iterator = interceptors.iterator();
		}
		@Override
		public ClientHttpResponse execute(HttpRequest request, byte[] body) throws IOException {
			if (this.iterator.hasNext()) {// 如果还有下一个拦截器,则执行其拦截方法
                // 这里的拦截器是 MetricsClientHttpRequestInterceptor,对应"metrics"信息,记录执行时间和结果
				ClientHttpRequestInterceptor nextInterceptor = this.iterator.next();
                // 执行拦截方法
				return nextInterceptor.intercept(request, body, this);
			}
			......
		}
	}

    跳转到了拦截器 MetricsClientHttpRequestInterceptor 的拦截方法:

public ClientHttpResponse intercept(HttpRequest request, byte[] body,
			ClientHttpRequestExecution execution) throws IOException {
		long startTime = System.nanoTime();// 标记开始执行时间
		ClientHttpResponse response = null;
		try {
            // 传入请求和Body,处理执行,又跳转回 InterceptingRequestExecution
			response = execution.execute(request, body);
			return response;
		}
		finally {// 在执行完方法,返回response之前,记录一下执行的信息
			SmallTagMap.Builder builder = SmallTagMap.builder();
			for (MetricsTagProvider tagProvider : tagProviders) {
				for (Map.Entry<String, String> tag : tagProvider
						.clientHttpRequestTags(request, response).entrySet()) {
					builder.add(Tags.newTag(tag.getKey(), tag.getValue()));
				}
			}
			MonitorConfig.Builder monitorConfigBuilder = MonitorConfig
					.builder(metricName);
			monitorConfigBuilder.withTags(builder);
            // 记录执行时间
			servoMonitorCache.getTimer(monitorConfigBuilder.build())
					.record(System.nanoTime() - startTime, TimeUnit.NANOSECONDS);
		}
	}

    又跳转回了 InterceptingRequestExecution,下个拦截器是 - LoadBalancerInterceptor,最后的Boss,调用LoadBalancerClient完成请求的负载。

    LoadBalancerInterceptor#intercept,主角登场了,终于等到你,还好没放弃:

public ClientHttpResponse intercept(final HttpRequest request, final byte[] body,
			final ClientHttpRequestExecution execution) throws IOException {
        // 获取原始URI
		final URI originalUri = request.getURI();
        // 获取请求中的服务名字,也就是所谓的"虚拟主机名"
		String serviceName = originalUri.getHost();
        // 转由 LoadBalancerClient 处理请求
		return this.loadBalancer.execute(serviceName, requestFactory.createRequest(request, body, execution));
	}

    下面空一行先停下来休息一下,然后看看,负载均衡是怎样实现的。

 

    LoadBalancerInterceptor这里默认的实现是 RibbonLoadBalancerClient,Ribbon是Netflix发布的负载均衡器。

    RibbonLoadBalancerClient#execute,负载均衡算法选出实际处理请求的Server:

public <T> T execute(String serviceId, LoadBalancerRequest<T> request) throws IOException {
        // serviceId即前面的虚拟主机名 "microservice-provider-user",获取loadBalancer
        //这里获取到的是 DynamicServerListLoadBalancer
		ILoadBalancer loadBalancer = getLoadBalancer(serviceId);
        // 基于loadBalancer,选择实际处理请求的服务提供者
		Server server = getServer(loadBalancer);
		if (server == null) {
			throw new IllegalStateException("No instances available for " + serviceId);
		}
		RibbonServer ribbonServer = new RibbonServer(serviceId, server, isSecure(server,
				serviceId), serverIntrospector(serviceId).getMetadata(server));
		return execute(serviceId, ribbonServer, request);
	}

    RibbonLoadBalancerClient#getServer,转交 loadBalancer 选择Server:

protected Server getServer(ILoadBalancer loadBalancer) {
		if (loadBalancer == null) {
			return null;
		}
        // 由 loadBalancer 完成选Server的重任,这里的 key 是默认值 "default"
		return loadBalancer.chooseServer("default"); // TODO: better handling of key
	}

    chooseServer也是一个抽象的模板方法,最后的实现是 ZoneAwareLoadBalancer#chooseServer:

public Server chooseServer(Object key) {
        if (!ENABLED.get() || getLoadBalancerStats().getAvailableZones().size() <= 1) {
            logger.debug("Zone aware logic disabled or there is only one zone");
            // 到了 BaseLoadBalancer的chooseServer
            return super.chooseServer(key);
        }
        ......
    }

    BaseLoadBalancer#chooseServer,转交规则来选择Server:

public Server chooseServer(Object key) {
        if (counter == null) {
            counter = createCounter();
        }
        // counter是一个计数器,起始值是"0",下面自增一次,变为 "1"
        counter.increment();
        if (rule == null) {
            return null;
        } else {
            try {
                // 默认的挑选规则是 "ZoneAvoidanceRule"
                return rule.choose(key);
            } catch (Exception e) {
                logger.warn("LoadBalancer [{}]:  Error choosing server for key {}", name, key, e);
                return null;
            }
        }
    }

    PredicateBasedRule是ZoneAvoidanceRule的父类。PredicateBasedRule#choose,可以看到,基础负载规则采用的是"RoundRobin"即轮询的方式:

public Server choose(Object key) {
        ILoadBalancer lb = getLoadBalancer();
        Optional<Server> server = getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key);
        if (server.isPresent()) {
            return server.get();
        } else {
            return null;
        }       
    }

    下面分析"轮询"的过程,AbstractServerPredicate#chooseRoundRobinAfterFiltering,传入Server列表的长度,自增取模实现:

public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) {
        // 首先拿到所有"合格"的Server
        List<Server> eligible = getEligibleServers(servers, loadBalancerKey);
        if (eligible.size() == 0) {
            return Optional.absent();
        }
        // 在 incrementAndGetModulo 中获取,"自增取模"
        return Optional.of(eligible.get(incrementAndGetModulo(eligible.size())));
    }

    AbstractServerPredicate#incrementAndGetModulo,维护了一个nextIndex,记录下次请求的下标:

private int incrementAndGetModulo(int modulo) {
        for (;;) {
            int current = nextIndex.get();// 第一次 current是"0"
            int next = (current + 1) % modulo;// current+1对size取模,作为下次的"current"
            // "0" == current,则以原子方式将该值设置为 next
            if (nextIndex.compareAndSet(current, next))
                return current;
        }
    }

    最后,我们通过控制台来验证一下请求是不是"轮询"分配到服务提供者的,本地启动了8000和8001两个Provider:

2018-12-09 18:55:30.794  c.i.c.s.user.controller.MovieController  : microservice-provider-user:192.168.2.117:8001
2018-12-09 18:55:33.196  c.i.c.s.user.controller.MovieController  : microservice-provider-user:192.168.2.117:8000
2018-12-09 18:55:34.713  c.i.c.s.user.controller.MovieController  : microservice-provider-user:192.168.2.117:8001
2018-12-09 18:55:34.975  c.i.c.s.user.controller.MovieController  : microservice-provider-user:192.168.2.117:8000
2018-12-09 18:55:35.175  c.i.c.s.user.controller.MovieController  : microservice-provider-user:192.168.2.117:8001
2018-12-09 18:55:35.351  c.i.c.s.user.controller.MovieController  : microservice-provider-user:192.168.2.117:8000
2018-12-09 18:55:35.534  c.i.c.s.user.controller.MovieController  : microservice-provider-user:192.168.2.117:8001

    可以看到,请求确实被轮询给两个Provider处理的。

 

    至此,我们完成了 SpringCloud 中 Ribbon 负载均衡的过程,知道了默认采用的是"轮询"的方式,实现是通过维护一个index,自增后取模来作为下标挑选实际响应请求的Server。除了轮询的方式,还有随机等算法。感兴趣可以按照类似思路分析测试一下。