本文主要讲如何不依赖TenserFlow等高级API实现一个简单的神经网络来做分类,所有的代码都在下面;在构造的数据(通过程序构造)上做了验证,经过1个小时的训练分类的准确率可以达到97%。

完整的结构化代码见于

https://github.com/conggova/SimpleBPNetwork.git

先来说说原理

网络构造

bp神经网络pythong代码 bp神经网络 python案例_bp神经网络

上面是一个简单的三层网络;输入层包含节点X1 , X2;隐层包含H1,H2;输出层包含O1。
输入节点的数量要等于输入数据的变量数目。
隐层节点的数量通过经验来确定。
如果只是做分类,输出层一般一个节点就够了。

从输入到输出的过程

1.输入节点的输出等于输入,X1节点输入x1时,输出还是x1.
2. 隐层和输出层的输入I为上层输出的加权求和再加偏置,输出为f(I) , f为激活函数,可以取sigmoid。H1的输出为 sigmoid(w1x1 + w2x2 + b)

误差反向传播的过程

Python实现

构造测试数据

# -*- coding: utf-8 -*-
import numpy as np
from random import random as rdn

'''
说明:我们构造1000条数据,每条数据有三个属性(用a1 , a2 , a3表示)
a1 离散型  取值 1 到 10 , 均匀分布
a2 离散型  取值 1 到 10 , 均匀分布
a3 连续型  取值 1 到 100 , 且符合正态分布 
各属性之间独立。

共2个分类(0 , 1),属性值与类别之间的关系如下,
0 : a1 in [1 , 3]  and a2 in [4 , 10] and a3 <= 50
1 : a1 in [1 , 3]  and a2 in [4 , 10] and a3 > 50
0 : a1 in [1 , 3]  and a2 in [1 ,  3] and a3 > 30
1 : a1 in [1 , 3]  and a2 in [1 ,  3] and a3 <= 30
0 : a1 in [4 , 10] and a2 in [4 , 10] and a3 <= 50
1 : a1 in [4 , 10] and a2 in [4 , 10] and a3 > 50
0 : a1 in [4 , 10] and a2 in [1 ,  3] and a3 > 30
1 : a1 in [4 , 10] and a2 in [1 ,  3] and a3 <= 30
'''


def genData() :
    #为a3生成符合正态分布的数据
    a3_data = np.random.randn(1000) * 30 + 50
    data = []
    for i in range(1000) :
        #生成a1
        a1 = int(rdn()*10) + 1
        if a1 > 10 :
            a1 = 10
        #生成a2
        a2 = int(rdn()*10) + 1
        if a2 > 10 :
            a2 = 10
        #取a3
        a3 = a3_data[i] 
        #计算这条数据对应的类别
        c_id = 0
        if a1 <= 3 and a2 >= 4 and a3 <= 50 :
            c_id = 0 
        elif a1 <= 3 and a2 >= 4 and a3 > 50 :
            c_id = 1 
        elif a1 <= 3 and a2 < 4 and a3 > 30 :
            c_id = 0
        elif a1 <= 3 and a2 < 4 and a3 <= 30 :
            c_id = 1
        elif a1 > 3 and a2 >= 4 and a3 <= 50 :
            c_id = 0 
        elif a1 > 3 and a2 >= 4 and a3 > 50 :
            c_id = 1 
        elif a1 > 3 and a2 < 4 and a3 > 30 :
            c_id = 0
        elif a1 > 3 and a2 < 4 and a3 <= 30 :
            c_id = 1
        else :
            print('error')
        #拼合成字串
        str_line = str(i) + ',' + str(a1) + ',' + str(a2) + ','  + str(a3) + ',' + str(c_id)
        data.append(str_line)
    return '\n'.join(data)

激活函数

# -*- coding: utf-8 -*-
"""
Created on Sun Dec  2 14:49:31 2018

@author: congpeiqing
"""
import numpy as np

#sigmoid函数的导数为  f(x)*(1-f(x))
def sigmoid(x) :
    return 1/(1 + np.exp(-x))

网络实现

# -*- coding: utf-8 -*-
"""
Created on Sun Dec  2 14:49:31 2018

@author: congpeiqing
"""

from activation_funcs import sigmoid
from random import random

class InputNode(object) :
    def __init__(self , idx) :
        self.idx = idx
        self.output = None
            
    def setInput(self , value) :
        self.output = value
        
    def getOutput(self) :
        return self.output
        
    def refreshParas(self , p1 , p2) :
        pass
    
    
class Neurode(object) :
    def __init__(self , layer_name , idx , input_nodes , activation_func = None , powers = None , bias = None) :
        self.idx = idx 
        self.layer_name = layer_name
        self.input_nodes = input_nodes 
        if activation_func is not None :
            self.activation_func = activation_func
        else :
            #默认取 sigmoid
            self.activation_func = sigmoid
        if powers is not None :
            self.powers = powers
        else :
            self.powers = [random() for i in range(len(self.input_nodes))]
        if bias is not None :
            self.bias = bias
        else :
            self.bias = random()
        self.output = None
            
    def getOutput(self) :
        self.output = self.activation_func(sum(map(lambda x : x[0].getOutput()*x[1] , zip(self.input_nodes, self.powers))) + self.bias)
        return self.output
            
    def refreshParas(self , err , learn_rate) :
        err_add = self.output * (1 - self.output) * err  
        for i in range(len(self.input_nodes)) :
            #调用子节点
            self.input_nodes[i].refreshParas(self.powers[i] * err_add , learn_rate)
            #调节参数
            power_delta = learn_rate * err_add * self.input_nodes[i].output   
            self.powers[i] += power_delta
            bias_delta = learn_rate * err_add
            self.bias += bias_delta
    
    
class SimpleBP(object) :
    def __init__(self , input_node_num , hidden_layer_node_num , trainning_data , test_data) :
        self.input_node_num = input_node_num
        self.input_nodes = [InputNode(i) for i in range(input_node_num)]
        self.hidden_layer_nodes = [Neurode('H' , i , self.input_nodes) for i in range(hidden_layer_node_num)]
        self.output_node = Neurode('O' , 0 , self.hidden_layer_nodes)
        self.trainning_data = trainning_data
        self.test_data = test_data
        
        
    #逐条训练
    def trainByItem(self) :
        cnt = 0
        while True :
            cnt += 1
            learn_rate = 1.0/cnt
            sum_diff = 0.0
            #对于每一条训练数据进行一次训练过程
            for item in self.trainning_data :
                for i in range(self.input_node_num) :
                    self.input_nodes[i].setInput(item[i])
                item_output = item[-1]
                nn_output = self.output_node.getOutput()
                #print('nn_output:' , nn_output)
                diff = (item_output-nn_output)
                sum_diff += abs(diff)
                self.output_node.refreshParas(diff , learn_rate)
                #print('refreshedParas')
            #结束条件        
            print(round(sum_diff / len(self.trainning_data) , 4))
            if sum_diff / len(self.trainning_data) < 0.1 :
                break
        
    def getAccuracy(self) :
        cnt = 0
        for item in self.test_data :
            for i in range(self.input_node_num) :
                self.input_nodes[i].setInput(item[i])
            item_output = item[-1]
            nn_output = self.output_node.getOutput()
            if (nn_output > 0.5 and item_output > 0.5) or (nn_output < 0.5 and item_output < 0.5) :
                cnt += 1
        return cnt/(len(self.test_data) + 0.0)

主调流程

# -*- coding: utf-8 -*-
"""
Created on Sun Dec  2 14:49:31 2018

@author: congpeiqing
"""
import os
from SimpleBP import SimpleBP
from GenData import genData

if not os.path.exists('data'):
    os.makedirs('data')  

#构造训练和测试数据
data_file = open('data/trainning_data.dat' , 'w')
data_file.write(genData())
data_file.close()

data_file = open('data/test_data.dat' , 'w')
data_file.write(genData())
data_file.close()


#文件格式:rec_id,attr1_value,attr2_value,attr3_value,class_id
#读取和解析训练数据
trainning_data_file = open('data/trainning_data.dat')
trainning_data = []
for line in trainning_data_file :
    line = line.strip()
    fld_list = line.split(',')
    trainning_data.append(tuple([float(field) for field in fld_list[1:]]))
trainning_data_file.close()

#读取和解析测试数据
test_data_file = open('data/test_data.dat')
test_data = []
for line in test_data_file :
    line = line.strip()
    fld_list = line.split(',')
    test_data.append(tuple([float(field) for field in fld_list[1:]]))
test_data_file.close()


#构造一个二分类网络 输入节点3个,隐层节点10个,输出节点一个
simple_bp = SimpleBP(3 , 10 , trainning_data , test_data)
#训练网络
simple_bp.trainByItem()
#测试分类准确率
print('Accuracy : ' , simple_bp.getAccuracy())
#训练时长比较长,准确率可以达到97%