项目概述:
基于opencv实现信用卡数字识别,如下图所示:
项目流程如下:
1.处理模板,进行轮廓检测(检测外轮廓)
2.得到当前轮廓的外接矩形,并将模板中的外接矩形切割出来,得到0-9对应的模板图片,并resize
3.使用形态学操作对信用卡图片进行处理,得到轮廓
4.根据矩形轮廓的长宽比挑选出信用卡的数字矩形框,并resize
5.使用for循环依次检测
代码如下:
ocr_template_match.py
1 # 导入工具包
2 from imutils import contours
3 import numpy as np
4 import argparse
5 import cv2
6 import myutils
7
8 # 设置参数
9 ap = argparse.ArgumentParser()
10 ap.add_argument("-i", "--image", default='images/credit_card_01.png',
11 help="path to input image")
12 ap.add_argument("-t", "--template", default='ocr_a_reference.png',
13 help="path to template OCR-A image")
14 args = vars(ap.parse_args())
15
16 # 指定信用卡类型
17 FIRST_NUMBER = {
18 "3": "American Express",
19 "4": "Visa",
20 "5": "MasterCard",
21 "6": "Discover Card"
22 }
23 # 绘图展示
24 def cv_show(name,img):
25 cv2.imshow(name,img)
26 cv2.waitKey(0)
27 cv2.destroyAllWindows()
28 # 读取一个模板图像
29 img = cv2.imread(args["template"])
30 cv_show('img',img)
31 # 灰度图
32 ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
33 cv_show('ref',ref)
34 # 二值图像
35 ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
36 cv_show('ref',ref)
37
38 # 计算轮廓
39 #cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
40 #返回的list中每个元素都是图像中的一个轮廓
41
42 ref_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
43
44 cv2.drawContours(img,refCnts,-1,(0,0,255),3)
45 cv_show('img',img)
46 print (np.array(refCnts).shape)
47 refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下
48 digits = {}
49
50 # 遍历每一个轮廓
51 for (i, c) in enumerate(refCnts):
52 # 计算外接矩形并且resize成合适大小
53 (x, y, w, h) = cv2.boundingRect(c)
54 roi = ref[y:y + h, x:x + w]
55 roi = cv2.resize(roi, (57, 88))
56
57 # 每一个数字对应每一个模板
58 digits[i] = roi
59
60 # 初始化卷积核
61 rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
62 sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
63
64 #读取输入图像,预处理
65 image = cv2.imread(args["image"])
66 cv_show('image',image)
67 image = myutils.resize(image, width=300)
68 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
69 cv_show('gray',gray)
70
71 #礼帽操作,突出更明亮的区域
72 tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
73 cv_show('tophat',tophat)
74 #
75 gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
76 ksize=-1)
77
78
79 gradX = np.absolute(gradX)
80 (minVal, maxVal) = (np.min(gradX), np.max(gradX))
81 gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
82 gradX = gradX.astype("uint8")
83
84 print (np.array(gradX).shape)
85 cv_show('gradX',gradX)
86
87 #通过闭操作(先膨胀,再腐蚀)将数字连在一起
88 gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
89 cv_show('gradX',gradX)
90 #THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
91 thresh = cv2.threshold(gradX, 0, 255,
92 cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
93 cv_show('thresh',thresh)
94
95 #再来一个闭操作
96
97 thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
98 cv_show('thresh',thresh)
99
100 # 计算轮廓
101
102 thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
103 cv2.CHAIN_APPROX_SIMPLE)
104
105 cnts = threshCnts
106 cur_img = image.copy()
107 cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
108 cv_show('img',cur_img)
109 locs = []
110
111 # 遍历轮廓
112 for (i, c) in enumerate(cnts):
113 # 计算矩形
114 (x, y, w, h) = cv2.boundingRect(c)
115 ar = w / float(h)
116
117 # 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
118 if ar > 2.5 and ar < 4.0:
119
120 if (w > 40 and w < 55) and (h > 10 and h < 20):
121 #符合的留下来
122 locs.append((x, y, w, h))
123
124 # 将符合的轮廓从左到右排序
125 locs = sorted(locs, key=lambda x:x[0])
126 output = []
127
128 # 遍历每一个轮廓中的数字
129 for (i, (gX, gY, gW, gH)) in enumerate(locs):
130 # initialize the list of group digits
131 groupOutput = []
132
133 # 根据坐标提取每一个组
134 group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
135 cv_show('group',group)
136 # 预处理
137 group = cv2.threshold(group, 0, 255,
138 cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
139 cv_show('group',group)
140 # 计算每一组的轮廓
141 group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
142 cv2.CHAIN_APPROX_SIMPLE)
143 digitCnts = contours.sort_contours(digitCnts,
144 method="left-to-right")[0]
145
146 # 计算每一组中的每一个数值
147 for c in digitCnts:
148 # 找到当前数值的轮廓,resize成合适的的大小
149 (x, y, w, h) = cv2.boundingRect(c)
150 roi = group[y:y + h, x:x + w]
151 roi = cv2.resize(roi, (57, 88))
152 cv_show('roi',roi)
153
154 # 计算匹配得分
155 scores = []
156
157 # 在模板中计算每一个得分
158 for (digit, digitROI) in digits.items():
159 # 模板匹配
160 result = cv2.matchTemplate(roi, digitROI,
161 cv2.TM_CCOEFF)
162 (_, score, _, _) = cv2.minMaxLoc(result)
163 scores.append(score)
164
165 # 得到最合适的数字
166 groupOutput.append(str(np.argmax(scores)))
167
168 # 画出来
169 cv2.rectangle(image, (gX - 5, gY - 5),
170 (gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
171 cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
172 cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)
173
174 # 得到结果
175 output.extend(groupOutput)
176
177 # 打印结果
178 print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
179 print("Credit Card #: {}".format("".join(output)))
180 cv2.imshow("Image", image)
181 cv2.waitKey(0)
myutils.py
import cv2
def sort_contours(cnts, method="left-to-right"):
reverse = False
i = 0
if method == "right-to-left" or method == "bottom-to-top":
reverse = True
if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一个最小的矩形,把找到的形状包起来x,y,h,w
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse))
return cnts, boundingBoxes
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized
ocr_a_reference.png
credit_card_01.png
credit_card_02.png
识别结果: