文章目录

  • 一、孤立森林
  • 1、孤立森林理论简介
  • 2、应用:
  • 3、注意:
  • 4、关键参数
  • 5、python源码
  • 二、PCA+马氏距离
  • 1、原始数据
  • 2、处理思路
  • 3、python源码


其他方法还有KNN,聚类,暂不考虑。

一、孤立森林

开始是想要识别出变压器的异常运行状态的,确实可以挖掘到一些离群点。后来发现也可以用于机器学习初期的数据处理,清洗掉异常点。

1、孤立森林理论简介

孤立森林理论简介,和参数说明

理解:最早被树分离出去(树的长度最短)的数据点,可能为异常点。

2、应用:

  • 可以无监督学习,检测异常样本。
  • 回归问题中,可以对输出进行异常检测,并去掉这些异常数据,从而提高预测准确率

3、注意:

不需要标准化,不需要PCA降维

4、关键参数

  • max_samples=30 估计器的数量,(默认值= 100)
  • random_state=rng, rng = np.random.RandomState(30)保证代码的可复现性,便于调试
  • contamination=0.1 异常样本占总样本的比例为0.1

5、python源码

import requests
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest
import numpy as np
from sklearn import preprocessing
from sklearn.decomposition import PCA

BIGDATA_DOMAIN = 'http://bigdata-platapi.fnwintranet.com'
BIGDATA_USERKEY = "a95c34cf34deb5a2d0af84f3aea2a616_algorithm-engine-flask"
# "EMS.HZ",
EQUIP_MK_NAME = [
                 "EMS.Pa", "EMS.Pb", "EMS.Pc", "EMS.P", "EMS.S", "EMS.Q",
                 "EMS.Ua", "EMS.Ub", "EMS.Uc", "EMS.Uac", "EMS.Ubc", "EMS.Uab",
                 "EMS.Ia", "EMS.Ib", "EMS.Ic",
                 "EMS.COSa", "EMS.COSb", "EMS.COSc", "EMS.COS",
                 "EMS.CHDphAT", "EMS.CHDphBT", "EMS.CHDphCT",
                 "EMS.VHDphAT", "EMS.VHDphBT", "EMS.VHDphCT", "EMS.VdisPer", "EMS.VHDlineBC", "EMS.VHDlineAC",
                 "EMS.VHDlineAB",
                 "EMS.HZ",
                 "EMS.TphC", "EMS.TphA", "EMS.TphB", "EMS.TphN"
                 ]


def get_iv_data(startTime, endTime, equip_id, station_id, equip_mk, EQUIP_MK_NAME):
    tags = {
        "equipID": equip_id,
        "equipMK": equip_mk,
        "staId": station_id
    }

    d = {
        "dataSource": "EMS",
        "isClean": False,
        "listQueries": [
            {
                "aggregator": "first",
                "downsample": "1d-first-null",
                "explicitTags": True,
                "metric": i,
                "tags": tags
            } for i in EQUIP_MK_NAME],
        "startTime": startTime,
        "endTime": endTime,
        "userKey": BIGDATA_USERKEY
    }

    url = BIGDATA_DOMAIN + '/internal/bigdata/time_series/get_history'
    r = requests.post(url, json=d)
    return r.json()


import time
import pandas as pd


def iv_data_process(iv_data, EQUIP_MK_NAME):
    l_data = []  # 测点值Series列表
    l_name = []
    for i in range(len(iv_data['data'])):
        data = pd.Series(iv_data['data'][i]['dps'])
        name = iv_data['data'][i]['metric']
        l_data.append(data)
        l_name.append(name)
    data = pd.concat(l_data, axis=1)
    data.columns = l_name
    data.index = map(lambda x: time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(x))), data.index)  # 将时间戳变为datetime
    data.sort_index(inplace=True)  # 按照index排序
    data = data.dropna()
    return data




def my_isolationForest(X_train, X_test):
    # fit the model
    rng = np.random.RandomState(30)
    clf = IsolationForest(max_samples=30,
                          random_state=rng, contamination=0)
    clf.fit(X_train)
    y_pred_train = clf.predict(X_train)
    y_pred_test = clf.predict(X_test)
    y_pred_test_decision_function = clf.decision_function(X_test)
    y_pred_train_decision_function = clf.decision_function(X_train)
    return y_pred_train, y_pred_test, clf, y_pred_test_decision_function, y_pred_train_decision_function


# "IsolationForest"
def plot_visualization(clf, title, X_train, X_test, EQUIP_MK_NAME):
    xx, yy = np.meshgrid(np.linspace(data[EQUIP_MK_NAME[0]].min(), data[EQUIP_MK_NAME[0]].max(), 100),
                         np.linspace(data[EQUIP_MK_NAME[1]].min(), data[EQUIP_MK_NAME[1]].max(), 100))
    Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.title(title)
    plt.contourf(xx, yy, Z, camp=plt.cm.Blues_r)
    b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white',
                     s=20, edgecolor='k')
    b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green',
                     s=20, edgecolor='k')
    for i in range(len(X_train)):
        if y_pred_train[i] == -1:
            b3 = plt.scatter(X_train[i, 0], X_train[i, 1], c='red',
                             s=20, edgecolor='k')
    for i in range(len(X_test)):
        if y_pred_test[i] == -1:
            b4 = plt.scatter(X_test[i, 0], X_test[i, 1], c='gold',
                             s=20, edgecolor='k')

    plt.axis('tight')
    plt.legend([b1, b2],
               ["training observations",
                "new regular observations", "train outlier", "test outlier"])
    plt.show()
    return Z, np.c_[xx.ravel(), yy.ravel()]


if __name__ == '__main__':
    param = {"equipID": "METE01",
             "equipMK": "METE",
             "staId": "PARK801_EMS01",
             "startTime": "2020-09-01 00:00:00",
             "endTime": "2021-08-20 23:59:00",
             }
    equipID = param['equipID']
    equipMK = param['equipMK']
    staId = param['staId']
    startTime = param['startTime']
    endTime = param['endTime']
    iv_data = get_iv_data(startTime, endTime, equipID, staId, equipMK, EQUIP_MK_NAME)
    data = iv_data_process(iv_data, EQUIP_MK_NAME)
    # data = normalize_data(data)
    # data = pca_process_data(data)
    # # 训练集和测试集
    X_train = data.loc[startTime:"2021-08-18 00:00:00"].values
    X_test = data.loc["2021-08-18 00:15:00":endTime].values

    y_pred_train, y_pred_test, clf, y_pred_test_decision_function, y_pred_train_decision_function = my_isolationForest(
        X_train, X_test)

    y_result = np.concatenate((y_pred_train.reshape(1, len(y_pred_train)), y_pred_test.reshape(1, len(y_pred_test))),
                              axis=1)
    y_result = pd.DataFrame(y_result.reshape(len(y_result[0]), 1), index=data.index)
    X_test_data = pd.merge(data, y_result, left_index=True, right_index=True, how='outer')

    # # 将输出结果和输入特征进行拼接

    # title = "IsolationForest"
    # Z, Z_feature = plot_visualization(clf, title, X_train, X_test, ['feature_1', 'feature_2'])

    # # 创建一个随机数序列,来查看异常检测的效果
    # X_test_random = np.random.randint(1, 100, [10, 2])  # 预测结果为[-1 -1 -1 -1 -1 -1 -1 -1 -1 -1]
    # Y_pred_random = clf.predict(X_test_random)

    # 拼接上决策得分
    y_score = np.concatenate((y_pred_train_decision_function.reshape(1, len(y_pred_train_decision_function)),
                              y_pred_test_decision_function.reshape(1, len(y_pred_test_decision_function))), axis=1)
    y_score = pd.DataFrame(y_score.reshape(len(y_score[0]), 1), index=data.index, columns=['score'])
    X_test_data = pd.merge(X_test_data, y_score, left_index=True, right_index=True, how='outer')
    plt.plot(X_test_data['score'])
    plt.show()

孤立森林算法python实现 孤立森林参数设置_python


孤立森林算法python实现 孤立森林参数设置_孤立森林算法python实现_02

二、PCA+马氏距离

属于统计分布假设检验的算法。

1、原始数据

和变压器运行状况相关的一些测点数据

孤立森林算法python实现 孤立森林参数设置_python_03

2、处理思路

大致思路就是:

  • 首先采用前期较短的正常时间段的数据作为训练数据,然后后续的所有数据作为测试数据。
  • 对训练数据进行标准化和PCA降维,再对测试数据进行标准化和PCA降维(我程序写的不对,一起标准化和降维了)
    归一化后:
  • 孤立森林算法python实现 孤立森林参数设置_python源码_04

  • PCA降维后:
  • 孤立森林算法python实现 孤立森林参数设置_孤立森林算法python实现_05

  • 对处理好的训练集求逆协方差阵和均值
    均值:
  • 孤立森林算法python实现 孤立森林参数设置_python_06

  • 逆协方差阵:
  • 孤立森林算法python实现 孤立森林参数设置_协方差_07

  • 计算训练集和测试集的马氏距离
  • 查看训练集马氏距离的分布(认为测试集和训练集分布应该是差不多的),正常的阈值可以为正态分布的95%分布以内。假设阈值为threshold
  • 孤立森林算法python实现 孤立森林参数设置_python_08

  • 验证集的马氏距离>threshold说明为异常点。

3、python源码

# -*- coding: utf-8 -*- 
# @Time : 2021/8/30 9:51 
# @Author : Orange
# @File : ma_distance_detection.py

from data_process import *
import matplotlib.pyplot as plt
import numpy as np
from global_variable import *
from get_demand_data import *


def is_pos_def(A):
    # 判断A是否为正定矩阵
    if np.allclose(A, A.T):  # 检查A是否为对称矩阵
        try:
            np.linalg.cholesky(A)
            return True
        except np.linalg.LinAlgError:
            return False
    else:
        return False


def cov_matrix(data):
    # 求协方差阵和逆协方差阵 cov(X, Y) = E(X-EX)(Y-EY)。
    covariance_matrix = np.cov(data, rowvar=False)
    if is_pos_def(covariance_matrix):
        inv_covariance_matrix = np.linalg.inv(covariance_matrix)
        if is_pos_def(inv_covariance_matrix):
            return covariance_matrix, inv_covariance_matrix
        else:
            print("Error: Inverse of Covariance Matrix is not positive definite!")
    else:
        print("Error: Covariance Matrix is not positive definite!")


def MahalanobisDist(inv_cov_matrix, mean_distr, data, verbose=False):
    # 计算马氏距离
    inv_covariance_matrix = inv_cov_matrix
    vars_mean = mean_distr
    diff = data - vars_mean
    md = []
    for i in range(len(diff)):
        md.append(np.sqrt(diff[i].dot(inv_covariance_matrix).dot(diff[i])))
    return md


def MD_threshold(dist, extreme=False, verbose=False):
    # 计算正常运行的马氏距离的阈值,K需要手动确定
    k = 3. if extreme else 1.2
    threshold = np.mean(dist) * k
    return threshold


def get_abnormal_data(dist_train, dist_test, threshold, X_train, X_test):
    anomaly_train = pd.DataFrame()
    anomaly_train['Mob dist'] = dist_train
    anomaly_train['Thresh'] = threshold
    # If Mob dist above threshold: Flag as anomaly
    anomaly_train['Anomaly'] = anomaly_train['Mob dist'] > anomaly_train['Thresh']
    anomaly_train.index = X_train.index

    anomaly = pd.DataFrame()
    anomaly['Mob dist'] = dist_test
    anomaly['Thresh'] = threshold
    # If Mob dist above threshold: Flag as anomaly
    anomaly['Anomaly'] = anomaly['Mob dist'] > anomaly['Thresh']
    anomaly.index = X_test.index
    print(anomaly.head())
    anomaly_alldata = pd.concat([anomaly_train, anomaly])
    return anomaly_alldata


def plot_visible(dist_train):
    import seaborn as sns
    sns.set(color_codes=True)
    #  可视化
    plt.figure()
    sns.distplot(np.square(dist_train), bins=10, kde=False)  # 马氏距离的平方服从卡方分布
    plt.xlim([0.0, 15])
    plt.xlabel('Mahalanobis dist *2')
    plt.show()

    plt.figure()
    sns.distplot(dist_train, bins=10, kde=True, color='green')  # 马氏距离服从正态分布
    plt.xlim([0.0, 5])
    plt.xlabel('Mahalanobis dist')
    plt.show()


if __name__ == '__main__':
    param = param
    # equipID = param['equipID']
    # equipMK = param['equipMK']
    # staId = param['staId']
    startTime = param['startTime']
    endTime = param['endTime']
    # iv_data = get_iv_data(startTime, endTime, equipID, staId, equipMK, EQUIP_MK_NAME)
    # data = iv_data_process(iv_data, EQUIP_MK_NAME)
    data = get_demand_data_finally()
    data_original = data.copy()
    data = normalize_data(data)
    data, columns_name = pca_process_data(data, n_components=n_components)

    # # 训练集和测试集
    X_train = data.loc[startTime:X_train_end_time]
    X_test = data.loc[X_test_start_time:endTime]

    cov_matrix, inv_cov_matrix = cov_matrix(X_train.values)

    mean_distr = X_train.values.mean(axis=0)

    dist_test = MahalanobisDist(inv_cov_matrix, mean_distr, X_test.values, verbose=False)
    dist_train = MahalanobisDist(inv_cov_matrix, mean_distr, X_train.values, verbose=False)

    # threshold = MD_threshold(dist_train, extreme=True)
    threshold = 3.5

    plot_visible(dist_train)

    anomaly_alldata = get_abnormal_data(dist_train, dist_test, threshold, X_train, X_test)

    # 异常数据可视化
    anomaly_alldata_finally = anomaly_alldata.copy()
    # anomaly_alldata.index = map(lambda x: x[5:10], anomaly_alldata.index)
    anomaly_alldata.plot(logy=True, figsize=(10, 6), ylim=[1e-1, 1e3], color=['green', 'red'])
    plt.xticks(rotation=0)
    plt.show()
    anomaly_alldata_finally.to_csv("ma_anomaly_alldata_finally.csv")

孤立森林算法python实现 孤立森林参数设置_协方差_09