Python程序编写技巧提升工作效率,在学习和工作过程中掌握一些小技巧可以大大提高工作的效率,接下来小编将介绍编程惯用法、基础用法、库的使用、内部机制、使用工具辅助项目开发、性能剖析与优化等方面的编程技巧。
一、Python程序入门
1、理解 Pythonic 概念,详见 Python 中的《Python之禅》
2、编写 Pythonic 代码
(1)避免不规范代码,比如只用大小写区分变量、使用容易混淆的变量名、害怕过长变量名等。有时候长的变量名会使代码更加具有可读性。
(2)深入学习 Python 相关知识,比如语言特性、库特性等,比如Python演变过程等。深入学习一两个业内公认的 Pythonic 的代码库,比如Flask等。
3:理解 Python 与 C 的不同之处,比如缩进与 {},单引号双引号,三元操作符?, Switch-Case 语句等。
4:在代码中适当添加注释
5:适当添加空行使代码布局更加合理
6:编写函数的 4 个原则
(1)函数设计要尽量短小,嵌套层次不宜过深
(2)函数声明应该做到合理、简单、易用
(3)函数参数设计应该考虑向下兼容
(4)一个函数只做一件事,尽量保证函数粒度的一致性
7:将常量集中在一个文件,且常量名尽量使用全大写字母
二、编程惯用法
8:利用 assert 语句来发现问题,但要注意,断言 assert 会影响效率
9:数据交换值时不推荐使用临时变量,而是直接 a, b = b, a
10:充分利用惰性计算(Lazy evaluation)的特性,从而避免不必要的计算
11:理解枚举替代实现的缺陷(最新版 Python 中已经加入了枚举特性)
12:不推荐使用 type 来进行类型检查,因为有些时候 type 的结果并不一定可靠。如果有需求,使用 isinstance 函数来代替
13:尽量将变量转化为浮点类型后再做除法(Python3 以后不用考虑)
14:警惕eval()函数的安全漏洞,有点类似于 SQL 注入
15:使用 enumerate() 同时获取序列迭代的索引和值
16:分清 == 和 is 的适用场景,特别是在比较字符串等不可变类型变量时(详见评论)
17:尽量使用 Unicode。在 Python2 中编码是很让人头痛的一件事,但 Python3 就不用过多考虑了
18:构建合理的包层次来管理 Module
三、基础用法
19:有节制的使用 from…import 语句,防止污染命名空间
20:优先使用 absolute import 来导入模块(Python3中已经移除了relative import)
21:i+=1 不等于 ++i,在 Python 中,++i 前边的加号仅表示正,不表示操作
22:习惯使用 with 自动关闭资源,特别是在文件读写中
23:使用 else 子句简化循环(异常处理)
24:遵循异常处理的几点基本原则
(1)注意异常的粒度,try 块中尽量少写代码
(2)谨慎使用单独的 except 语句,或 except Exception 语句,而是定位到具体异常
(3)注意异常捕获的顺序,在合适的层次处理异常
(4)使用更加友好的异常信息,遵守异常参数的规范
25:避免 finally 中可能发生的陷阱
26:深入理解 None,正确判断对象是否为空。
27:连接字符串应优先使用 join 函数,而不是+操作
28:格式化字符串时尽量使用 format 函数,而不是 % 形式
29:区别对待可变对象和不可变对象,特别是作为函数参数时
30:[], {}和():一致的容器初始化形式。使用列表解析可以使代码更清晰,同时效率更高
31:函数传参数,既不是传值也不是传引用,而是传对象或者说对象的引用
32:警惕默认参数潜在的问题,特别是当默认参数为可变对象时
33:函数中慎用变长参数 args 和 kargs
(1)这种使用太灵活,从而使得函数签名不够清晰,可读性较差
(2)如果因为函数参数过多而是用变长参数简化函数定义,那么一般该函数可以重构
34:深入理解 str()和 repr() 的区别
(1)两者之间的目标不同:str 主要面向客户,其目的是可读性,返回形式为用户友好性和可读性都比较高的字符串形式;而 repr 是面向 Python 解释器或者说Python开发人员,其目的是准确性,其返回值表示 Python 解释器内部的定义
(2)在解释器中直接输入变量,默认调用repr函数,而print(var)默认调用str函数
(3)repr函数的返回值一般可以用eval函数来还原对象
(4)两者分别调用对象的内建函数 __str__ ()和 __repr__ ()
35:分清静态方法staticmethod 和类方法classmethod 的使用场景
四、库的使用
36:掌握字符串的基本用法
37:按需选择 sort() 和 sorted() 函数
sort() 是列表在就地进行排序,所以不能排序元组等不可变类型。
sorted() 可以排序任意的可迭代类型,同时不改变原变量本身。
38:使用copy模块深拷贝对象,区分浅拷贝(shallow copy)和深拷贝(deep copy)
39:使用 Counter 进行计数统计,Counter 是字典类的子类,在 collections 模块中
40:深入掌握 ConfigParse
41:使用 argparse 模块处理命令行参数
42:使用 pandas 处理大型 CSV 文件
Python 本身提供一个CSV文件处理模块,并提供reader、writer等函数。
Pandas 可提供分块、合并处理等,适用于数据量大的情况,且对二维数据操作更方便。
43:使用 ElementTree解析XML
44:理解模块 pickle 的优劣
优势:接口简单、各平台通用、支持的数据类型广泛、扩展性强
劣势:不保证数据操作的原子性、存在安全问题、不同语言之间不兼容
45:序列化的另一个选择 JSON 模块:load 和 dump 操作
46:使用 traceback 获取栈信息
47:使用 logging 记录日志信息
48:使用 threading 模块编写多线程程序
49:使用 Queue 模块使多线程编程更安全
五、设计模式
50:利用模块实现单例模式
51:用 mixin 模式让程序更加灵活
52:用发布-订阅模式实现松耦合
53:用状态模式美化代码
六、内部机制
54:理解 build-in 对象
55:__init__ ()不是构造方法,理解 __new__ ()与它之间的区别
56:理解变量的查找机制,即作用域
局部作用域
全局作用域
嵌套作用域
内置作用域
57:为什么需要self参数
58:理解 MRO(方法解析顺序)与多继承
59:理解描述符机制
60:区别 __getattr__ ()与 __getattribute__ ()方法之间的区别
61:使用更安全的 property
62:掌握元类 metaclass
63:熟悉 Python 对象协议
64:利用操作符重载实现中缀语法
65:熟悉 Python 的迭代器协议
66:熟悉 Python 的生成器
67:基于生成器的协程和 greenlet,理解协程、多线程、多进程之间的区别
68:理解 GIL 的局限性
69:对象的管理和垃圾回收
七、使用工具辅助项目开发
70:从 PyPI 安装第三方包
71:使用 pip 和 yolk 安装、管理包
72:做 paster 创建包
73:理解单元测试的概念
74:为包编写单元测试
75:利用测试驱动开发(TDD)提高代码的可测性
76:使用 Pylint 检查代码风格
代码风格审查
代码错误检查
发现重复以及不合理的代码,方便重构
高度的可配置化和可定制化
支持各种 IDE 和编辑器的集成
能够基于 Python 代码生成 UML 图
能够与 Jenkins 等持续集成工具相结合,支持自动代码审查
77:进行高效的代码审查
78:将包发布到 PyPI
八、性能剖析与优化
79:了解代码优化的基本原则
80:借助性能优化工具
81:利用 cProfile 定位性能瓶颈
82:使用 memory_profiler 和 objgraph 剖析内存使用
83:努力降低算法复杂度
84:掌握循环优化的基本技巧
减少循环内部的计算
将显式循环改为隐式循环,当然这会牺牲代码的可读性
在循环中尽量引用局部变量
关注内层嵌套循环
85:使用生成器提高效率
86:使用不同的数据结构优化性能
87:充分利用 set 的优势
88:使用 multiprocessing 模块克服 GIL 缺陷
89:使用线程池提高效率
90:使用 Cythonb 编写扩展模块