计算机的理解模式
向量化思维在机器学习中也非常常见,我们可以认为,一张图片是一个向量,一篇文章是一个向量,一句话也可以是一个向量。 这样的向量化表示优点也很明显,就是能被计算机计算,是计算机能够理解的模式。
转成词向量有什么用
- 把这些对词语理解的向量通过特定方法组合起来,就可以有对某句话的理解了;
- 可以在向量空间中找寻同义词,因为同义词表达的意思相近,往往在空间中距离也非常近;
- 词语的距离换算。比如可以拿词语做加减法。公猫 - 母猫 就约等于 男人 - 女人。 如果我哪天想知道 莫烦Python 的友商有哪些,我可以做一下这样的计算:
友商 = 莫烦Python - (腾讯 - 阿里)
转词向量的方法
- CBOW
- Skip-Gram
CBOW
是什么
CBOW 是 Continuous Bag-of-Word 的简称,同篇论文中, 还有另外一个一起提出的,十分相似的模型,Skip-Gram
作用
挑一个要预测的词,来学习这个词前后文中词语和预测词的关系
原理
用前后文的词向量来预测句中的某个词
这个模型的输入输出可以是:
# 1
# 输入:[我,爱] + [烦,Python]
# 输出:莫
# 2
# 输入:[爱,莫] + [Python, ,]
# 输出:烦
# 3
# 输入:[莫,烦] + [,,莫]
# 输出:Python
# 4
# 输入:[烦,Python] + [莫,烦]
# 输出:,
通过在大数据量的短语或文章中学习这样的词语关系,这个模型就能理解要预测的词和前后文的关系。而图中彩色的词向量就是这种训练过程的一个副产品。
原作代码
我的代码
CBOW.py
# [Efficient Estimation of Word Representations in Vector Space](https://arxiv.org/pdf/1301.3781.pdf)
from tensorflow import keras
import tensorflow as tf
from utils import process_w2v_data # this refers to utils.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)
from visual import show_w2v_word_embedding # this refers to visual.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)
corpus = [
# numbers
"5 2 4 8 6 2 3 6 4",
"4 8 5 6 9 5 5 6",
"1 1 5 2 3 3 8",
"3 6 9 6 8 7 4 6 3",
"8 9 9 6 1 4 3 4",
"1 0 2 0 2 1 3 3 3 3 3",
"9 3 3 0 1 4 7 8",
"9 9 8 5 6 7 1 2 3 0 1 0",
# alphabets, expecting that 9 is close to letters
"a t g q e h 9 u f",
"e q y u o i p s",
"q o 9 p l k j o k k o p",
"h g y i u t t a e q",
"i k d q r e 9 e a d",
"o p d g 9 s a f g a",
"i u y g h k l a s w",
"o l u y a o g f s",
"o p i u y g d a s j d l",
"u k i l o 9 l j s",
"y g i s h k j l f r f",
"i o h n 9 9 d 9 f a 9",
]
class CBOW(keras.Model):
def __init__(self, v_dim, emb_dim):
super().__init__()
self.v_dim = v_dim
self.embeddings = keras.layers.Embedding(
input_dim=v_dim, output_dim=emb_dim, # [n_vocab, emb_dim]
embeddings_initializer=keras.initializers.RandomNormal(0., 0.1),
)
# noise-contrastive estimation
self.nce_w = self.add_weight(
name="nce_w", shape=[v_dim, emb_dim],
initializer=keras.initializers.TruncatedNormal(0., 0.1)) # [n_vocab, emb_dim]
self.nce_b = self.add_weight(
name="nce_b", shape=(v_dim,),
initializer=keras.initializers.Constant(0.1)) # [n_vocab, ]
self.opt = keras.optimizers.Adam(0.01)
def call(self, x, training=None, mask=None):
#定义模型的前向说白了,其实也就是把预测时的embedding词向量给拿出来, 然后求一个词向量平均,这样输出就够了。在用这个平均的向量预测一下目标值
# x.shape = [n, skip_window*2]
o = self.embeddings(x) # [n, skip_window*2, emb_dim]
o = tf.reduce_mean(o, axis=1) # [n, emb_dim]
return o
# negative sampling: take one positive label and num_sampled negative labels to compute the loss
# in order to reduce the computation of full softmax
def loss(self, x, y, training=None):
embedded = self.call(x, training) # [n, emb_dim]
return tf.reduce_mean(
# 使用nce_loss能够大大加速softmax求loss的方式,它不关心所有词汇loss, 而是抽样选取几个词汇用来传递loss,因为如果考虑所有词汇,那么当词汇量大的时候,会很慢
tf.nn.nce_loss(
weights=self.nce_w, biases=self.nce_b, labels=tf.expand_dims(y, axis=1),
inputs=embedded, num_sampled=5, num_classes=self.v_dim))
def step(self, x, y):
# tensorflow2.0 中,用tape连接需要计算梯度的函数喝变量,方便求解同时也提升效率
with tf.GradientTape() as tape:
loss = self.loss(x, y, True)
grads = tape.gradient(loss, self.trainable_variables)
self.opt.apply_gradients(zip(grads, self.trainable_variables))
return loss.numpy()
def train(model, data):
for t in range(2500):
bx, by = data.sample(8)
loss = model.step(bx, by)
if t % 200 == 0:
print("step: {} | loss: {}".format(t, loss))
if __name__ == "__main__":
d = process_w2v_data(corpus, skip_window=2, method="cbow")
m = CBOW(d.num_word, 2) #2就是词向量维度emb_dim
# m.summary()
train(m, d)
# plotting
show_w2v_word_embedding(m, d, "./visual/results/cbow.png")
visual.py
import matplotlib.pyplot as plt
import numpy as np
import pickle
from matplotlib.pyplot import cm
import os
import utils
def show_matrix(_matrix):
plt.imshow(_matrix,cmap="YlGn",vmin=_matrix.min(),vmax=_matrix.max())
plt.xticks(np.arange(_matrix.shape[0]), fontsize=6, rotation=90)
plt.yticks(np.arange(_matrix.shape[0]), np.arange(1,_matrix.shape[0] + 1), fontsize=6)
plt.tight_layout()
plt.show()
def show_tfidf(tfidf, vocab, filename):
# [n_doc, n_vocab]
plt.imshow(tfidf, cmap="YlGn", vmin=tfidf.min(), vmax=tfidf.max())
plt.xticks(np.arange(tfidf.shape[1]), vocab, fontsize=6, rotation=90)
plt.yticks(np.arange(tfidf.shape[0]), np.arange(1, tfidf.shape[0]+1), fontsize=6)
plt.tight_layout()
plt.savefig("./visual/results/%s.png" %filename, format="png", dpi=500)
plt.show()
def show_w2v_word_embedding(model, data: utils.Dataset, path):
word_emb = model.embeddings.get_weights()[0]
for i in range(data.num_word):
c = "blue"
try:
int(data.i2v[i])
except ValueError:
c = "red"
plt.text(word_emb[i, 0], word_emb[i, 1], s=data.i2v[i], color=c, weight="bold")
plt.xlim(word_emb[:, 0].min() - .5, word_emb[:, 0].max() + .5)
plt.ylim(word_emb[:, 1].min() - .5, word_emb[:, 1].max() + .5)
plt.xticks(())
plt.yticks(())
plt.xlabel("embedding dim1")
plt.ylabel("embedding dim2")
plt.savefig(path, dpi=300, format="png")
plt.show()
def seq2seq_attention():
with open("./visual/tmp/attention_align.pkl", "rb") as f:
data = pickle.load(f)
i2v, x, y, align = data["i2v"], data["x"], data["y"], data["align"]
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
for i in range(6):
plt.subplot(2, 3, i + 1)
x_vocab = [i2v[j] for j in np.ravel(x[i])]
y_vocab = [i2v[j] for j in y[i, 1:]]
plt.imshow(align[i], cmap="YlGn", vmin=0., vmax=1.)
plt.yticks([j for j in range(len(y_vocab))], y_vocab)
plt.xticks([j for j in range(len(x_vocab))], x_vocab)
if i == 0 or i == 3:
plt.ylabel("Output")
if i >= 3:
plt.xlabel("Input")
plt.tight_layout()
plt.savefig("./visual/results/seq2seq_attention.png", format="png", dpi=200)
plt.show()
def all_mask_kinds():
seqs = ["I love you", "My name is M", "This is a very long seq", "Short one"]
vocabs = set((" ".join(seqs)).split(" "))
i2v = {i: v for i, v in enumerate(vocabs, start=1)}
i2v["<PAD>"] = 0 # add 0 idx for <PAD>
v2i = {v: i for i, v in i2v.items()}
id_seqs = [[v2i[v] for v in seq.split(" ")] for seq in seqs]
padded_id_seqs = np.array([l + [0] * (6 - len(l)) for l in id_seqs])
# padding mask
pmask = np.where(padded_id_seqs == 0, np.ones_like(padded_id_seqs), np.zeros_like(padded_id_seqs)) # 0 idx is padding
pmask = np.repeat(pmask[:, None, :], pmask.shape[-1], axis=1) # [n, step, step]
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(pmask[i-1], vmax=1, vmin=0, cmap="YlGn")
plt.xticks(range(6), seqs[i - 1].split(" "), rotation=45)
plt.yticks(range(6), seqs[i - 1].split(" "),)
plt.grid(which="minor", c="w", lw=0.5, linestyle="-")
plt.tight_layout()
plt.savefig("./visual/results/transformer_pad_mask.png", dpi=200)
plt.show()
# look ahead mask
max_len = pmask.shape[-1]
omask = ~np.triu(np.ones((max_len, max_len), dtype=np.bool), 1)
omask = np.tile(np.expand_dims(omask, axis=0), [np.shape(seqs)[0], 1, 1]) # [n, step, step]
omask = np.where(omask, pmask, 1)
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(omask[i - 1], vmax=1, vmin=0, cmap="YlGn")
plt.xticks(range(6), seqs[i - 1].split(" "), rotation=45)
plt.yticks(range(6), seqs[i - 1].split(" "), )
plt.grid(which="minor", c="w", lw=0.5, linestyle="-")
plt.tight_layout()
plt.savefig("./visual/results/transformer_look_ahead_mask.png", dpi=200)
plt.show()
def position_embedding():
max_len = 500
model_dim = 512
pos = np.arange(max_len)[:, None]
pe = pos / np.power(10000, 2. * np.arange(model_dim)[None, :] / model_dim) # [max_len, model_dim]
pe[:, 0::2] = np.sin(pe[:, 0::2])
pe[:, 1::2] = np.cos(pe[:, 1::2])
plt.imshow(pe, vmax=1, vmin=-1, cmap="rainbow")
plt.ylabel("word position")
plt.xlabel("embedding dim")
plt.savefig("./visual/results/transformer_position_embedding.png", dpi=200)
plt.show()
def transformer_attention_matrix(case=0):
with open("./visual/tmp/transformer_attention_matrix.pkl", "rb") as f:
data = pickle.load(f)
src = data["src"][case]
tgt = data["tgt"][case]
attentions = data["attentions"]
encoder_atten = attentions["encoder"]
decoder_tgt_atten = attentions["decoder"]["mh1"]
decoder_src_atten = attentions["decoder"]["mh2"]
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
plt.figure(0, (7, 7))
plt.suptitle("Encoder self-attention")
for i in range(3):
for j in range(4):
plt.subplot(3, 4, i * 4 + j + 1)
plt.imshow(encoder_atten[i][case, j][:len(src), :len(src)], vmax=1, vmin=0, cmap="rainbow")
plt.xticks(range(len(src)), src)
plt.yticks(range(len(src)), src)
if j == 0:
plt.ylabel("layer %i" % (i+1))
if i == 2:
plt.xlabel("head %i" % (j+1))
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.savefig("./visual/results/transformer%d_encoder_self_attention.png" % case, dpi=200)
plt.show()
plt.figure(1, (7, 7))
plt.suptitle("Decoder self-attention")
for i in range(3):
for j in range(4):
plt.subplot(3, 4, i * 4 + j + 1)
plt.imshow(decoder_tgt_atten[i][case, j][:len(tgt), :len(tgt)], vmax=1, vmin=0, cmap="rainbow")
plt.xticks(range(len(tgt)), tgt, rotation=90, fontsize=7)
plt.yticks(range(len(tgt)), tgt, fontsize=7)
if j == 0:
plt.ylabel("layer %i" % (i+1))
if i == 2:
plt.xlabel("head %i" % (j+1))
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.savefig("./visual/results/transformer%d_decoder_self_attention.png" % case, dpi=200)
plt.show()
plt.figure(2, (7, 8))
plt.suptitle("Decoder-Encoder attention")
for i in range(3):
for j in range(4):
plt.subplot(3, 4, i*4+j+1)
plt.imshow(decoder_src_atten[i][case, j][:len(tgt), :len(src)], vmax=1, vmin=0, cmap="rainbow")
plt.xticks(range(len(src)), src, fontsize=7)
plt.yticks(range(len(tgt)), tgt, fontsize=7)
if j == 0:
plt.ylabel("layer %i" % (i+1))
if i == 2:
plt.xlabel("head %i" % (j+1))
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.savefig("./visual/results/transformer%d_decoder_encoder_attention.png" % case, dpi=200)
plt.show()
def transformer_attention_line(case=0):
with open("./visual/tmp/transformer_attention_matrix.pkl", "rb") as f:
data = pickle.load(f)
src = data["src"][case]
tgt = data["tgt"][case]
attentions = data["attentions"]
decoder_src_atten = attentions["decoder"]["mh2"]
tgt_label = tgt[1:11][::-1]
src_label = ["" for _ in range(2)] + src[::-1]
fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, figsize=(7, 14))
for i in range(2):
for j in range(2):
ax[i, j].set_yticks(np.arange(len(src_label)))
ax[i, j].set_yticklabels(src_label, fontsize=9) # src
ax[i, j].set_ylim(0, len(src_label)-1)
ax_ = ax[i, j].twinx()
ax_.set_yticks(np.linspace(ax_.get_yticks()[0], ax_.get_yticks()[-1], len(ax[i, j].get_yticks())))
ax_.set_yticklabels(tgt_label, fontsize=9) # tgt
img = decoder_src_atten[-1][case, i + j][:10, :8]
color = cm.rainbow(np.linspace(0, 1, img.shape[0]))
left_top, right_top = img.shape[1], img.shape[0]
for ri, c in zip(range(right_top), color): # tgt
for li in range(left_top): # src
alpha = (img[ri, li] / img[ri].max()) ** 8
ax[i, j].plot([0, 1], [left_top - li + 1, right_top - 1 - ri], alpha=alpha, c=c)
ax[i, j].set_xticks(())
ax[i, j].set_xlabel("head %i" % (j + 1 + i * 2))
ax[i, j].set_xlim(0, 1)
plt.subplots_adjust(top=0.9)
plt.tight_layout()
plt.savefig("./visual/results/transformer%d_encoder_decoder_attention_line.png" % case, dpi=100)
def self_attention_matrix(bert_or_gpt="bert", case=0):
with open("./visual/tmp/"+bert_or_gpt+"_attention_matrix.pkl", "rb") as f:
data = pickle.load(f)
src = data["src"]
attentions = data["attentions"]
encoder_atten = attentions["encoder"]
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
s_len = 0
for s in src[case]:
if s == "<SEP>":
break
s_len += 1
plt.figure(0, (7, 28))
for j in range(4):
plt.subplot(4, 1, j + 1)
img = encoder_atten[-1][case, j][:s_len-1, :s_len-1]
plt.imshow(img, vmax=img.max(), vmin=0, cmap="rainbow")
plt.xticks(range(s_len-1), src[case][:s_len-1], rotation=90, fontsize=9)
plt.yticks(range(s_len-1), src[case][1:s_len], fontsize=9)
plt.xlabel("head %i" % (j+1))
plt.subplots_adjust(top=0.9)
plt.tight_layout()
plt.savefig("./visual/results/"+bert_or_gpt+"%d_self_attention.png" % case, dpi=500)
# plt.show()
def self_attention_line(bert_or_gpt="bert", case=0):
with open("./visual/tmp/"+bert_or_gpt+"_attention_matrix.pkl", "rb") as f:
data = pickle.load(f)
src = data["src"][case]
attentions = data["attentions"]
encoder_atten = attentions["encoder"]
s_len = 0
print(" ".join(src))
for s in src:
if s == "<SEP>":
break
s_len += 1
y_label = src[:s_len][::-1]
fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, figsize=(7, 14))
for i in range(2):
for j in range(2):
ax[i, j].set_yticks(np.arange(len(y_label)))
ax[i, j].tick_params(labelright=True)
ax[i, j].set_yticklabels(y_label, fontsize=9) # input
img = encoder_atten[-1][case, i+j][:s_len - 1, :s_len - 1]
color = cm.rainbow(np.linspace(0, 1, img.shape[0]))
for row, c in zip(range(img.shape[0]), color):
for col in range(img.shape[1]):
alpha = (img[row, col] / img[row].max()) ** 5
ax[i, j].plot([0, 1], [img.shape[1]-col, img.shape[0]-row-1], alpha=alpha, c=c)
ax[i, j].set_xticks(())
ax[i, j].set_xlabel("head %i" % (j+1+i*2))
ax[i, j].set_xlim(0, 1)
plt.subplots_adjust(top=0.9)
plt.tight_layout()
plt.savefig("./visual/results/"+bert_or_gpt+"%d_self_attention_line.png" % case, dpi=100)
if __name__ == "__main__":
os.makedirs("./visual/results", exist_ok=True)
# all_mask_kinds()
# seq2seq_attention()
# position_embedding()
transformer_attention_matrix(case=0)
transformer_attention_line(case=0)
# model = ["gpt", "bert", "bert_window_mask"][1]
# case = 6
# self_attention_matrix(model, case=case)
# self_attention_line(model, case=case)
utils.py
import numpy as np
import datetime
import os
import requests
import pandas as pd
import re
import itertools
PAD_ID = 0
class DateData:
def __init__(self, n):
np.random.seed(1)
self.date_cn = []
self.date_en = []
for timestamp in np.random.randint(143835585, 2043835585, n):
date = datetime.datetime.fromtimestamp(timestamp)
self.date_cn.append(date.strftime("%y-%m-%d"))
self.date_en.append(date.strftime("%d/%b/%Y"))
self.vocab = set(
[str(i) for i in range(0, 10)] + ["-", "/", "<GO>", "<EOS>"] + [
i.split("/")[1] for i in self.date_en])
self.v2i = {v: i for i, v in enumerate(sorted(list(self.vocab)), start=1)}
self.v2i["<PAD>"] = PAD_ID
self.vocab.add("<PAD>")
self.i2v = {i: v for v, i in self.v2i.items()}
self.x, self.y = [], []
for cn, en in zip(self.date_cn, self.date_en):
self.x.append([self.v2i[v] for v in cn])
self.y.append(
[self.v2i["<GO>"], ] + [self.v2i[v] for v in en[:3]] + [
self.v2i[en[3:6]], ] + [self.v2i[v] for v in en[6:]] + [
self.v2i["<EOS>"], ])
self.x, self.y = np.array(self.x), np.array(self.y)
self.start_token = self.v2i["<GO>"]
self.end_token = self.v2i["<EOS>"]
def sample(self, n=64):
bi = np.random.randint(0, len(self.x), size=n)
bx, by = self.x[bi], self.y[bi]
decoder_len = np.full((len(bx),), by.shape[1] - 1, dtype=np.int32)
return bx, by, decoder_len
def idx2str(self, idx):
x = []
for i in idx:
x.append(self.i2v[i])
if i == self.end_token:
break
return "".join(x)
@property
def num_word(self):
return len(self.vocab)
def pad_zero(seqs, max_len):
padded = np.full((len(seqs), max_len), fill_value=PAD_ID, dtype=np.long)
for i, seq in enumerate(seqs):
padded[i, :len(seq)] = seq
return padded
def maybe_download_mrpc(save_dir="./MRPC/", proxy=None):
train_url = 'https://mofanpy.com/static/files/MRPC/msr_paraphrase_train.txt'
test_url = 'https://mofanpy.com/static/files/MRPC/msr_paraphrase_test.txt'
os.makedirs(save_dir, exist_ok=True)
proxies = {"http": proxy, "https": proxy}
for url in [train_url, test_url]:
raw_path = os.path.join(save_dir, url.split("/")[-1])
if not os.path.isfile(raw_path):
print("downloading from %s" % url)
r = requests.get(url, proxies=proxies)
with open(raw_path, "w", encoding="utf-8") as f:
f.write(r.text.replace('"', "<QUOTE>"))
print("completed")
def _text_standardize(text):
text = re.sub(r'—', '-', text)
text = re.sub(r'–', '-', text)
text = re.sub(r'―', '-', text)
text = re.sub(r" \d+(,\d+)?(\.\d+)? ", " <NUM> ", text)
text = re.sub(r" \d+-+?\d*", " <NUM>-", text)
return text.strip()
def _process_mrpc(dir="./MRPC", rows=None):
data = {"train": None, "test": None}
files = os.listdir(dir)
for f in files:
df = pd.read_csv(os.path.join(dir, f), sep='\t', nrows=rows)
k = "train" if "train" in f else "test"
data[k] = {"is_same": df.iloc[:, 0].values, "s1": df["#1 String"].values, "s2": df["#2 String"].values}
vocab = set()
for n in ["train", "test"]:
for m in ["s1", "s2"]:
for i in range(len(data[n][m])):
data[n][m][i] = _text_standardize(data[n][m][i].lower())
cs = data[n][m][i].split(" ")
vocab.update(set(cs))
v2i = {v: i for i, v in enumerate(sorted(vocab), start=1)}
v2i["<PAD>"] = PAD_ID
v2i["<MASK>"] = len(v2i)
v2i["<SEP>"] = len(v2i)
v2i["<GO>"] = len(v2i)
i2v = {i: v for v, i in v2i.items()}
for n in ["train", "test"]:
for m in ["s1", "s2"]:
data[n][m+"id"] = [[v2i[v] for v in c.split(" ")] for c in data[n][m]]
return data, v2i, i2v
class MRPCData:
num_seg = 3
pad_id = PAD_ID
def __init__(self, data_dir="./MRPC/", rows=None, proxy=None):
maybe_download_mrpc(save_dir=data_dir, proxy=proxy)
data, self.v2i, self.i2v = _process_mrpc(data_dir, rows)
self.max_len = max(
[len(s1) + len(s2) + 3 for s1, s2 in zip(
data["train"]["s1id"] + data["test"]["s1id"], data["train"]["s2id"] + data["test"]["s2id"])])
self.xlen = np.array([
[
len(data["train"]["s1id"][i]), len(data["train"]["s2id"][i])
] for i in range(len(data["train"]["s1id"]))], dtype=int)
x = [
[self.v2i["<GO>"]] + data["train"]["s1id"][i] + [self.v2i["<SEP>"]] + data["train"]["s2id"][i] + [self.v2i["<SEP>"]]
for i in range(len(self.xlen))
]
self.x = pad_zero(x, max_len=self.max_len)
self.nsp_y = data["train"]["is_same"][:, None]
self.seg = np.full(self.x.shape, self.num_seg-1, np.int32)
for i in range(len(x)):
si = self.xlen[i][0] + 2
self.seg[i, :si] = 0
si_ = si + self.xlen[i][1] + 1
self.seg[i, si:si_] = 1
self.word_ids = np.array(list(set(self.i2v.keys()).difference(
[self.v2i[v] for v in ["<PAD>", "<MASK>", "<SEP>"]])))
def sample(self, n):
bi = np.random.randint(0, self.x.shape[0], size=n)
bx, bs, bl, by = self.x[bi], self.seg[bi], self.xlen[bi], self.nsp_y[bi]
return bx, bs, bl, by
@property
def num_word(self):
return len(self.v2i)
@property
def mask_id(self):
return self.v2i["<MASK>"]
class MRPCSingle:
pad_id = PAD_ID
def __init__(self, data_dir="./MRPC/", rows=None, proxy=None):
maybe_download_mrpc(save_dir=data_dir, proxy=proxy)
data, self.v2i, self.i2v = _process_mrpc(data_dir, rows)
self.max_len = max([len(s) + 2 for s in data["train"]["s1id"] + data["train"]["s2id"]])
x = [
[self.v2i["<GO>"]] + data["train"]["s1id"][i] + [self.v2i["<SEP>"]]
for i in range(len(data["train"]["s1id"]))
]
x += [
[self.v2i["<GO>"]] + data["train"]["s2id"][i] + [self.v2i["<SEP>"]]
for i in range(len(data["train"]["s2id"]))
]
self.x = pad_zero(x, max_len=self.max_len)
self.word_ids = np.array(list(set(self.i2v.keys()).difference([self.v2i["<PAD>"]])))
def sample(self, n):
bi = np.random.randint(0, self.x.shape[0], size=n)
bx = self.x[bi]
return bx
@property
def num_word(self):
return len(self.v2i)
class Dataset:
def __init__(self, x, y, v2i, i2v):
self.x, self.y = x, y
self.v2i, self.i2v = v2i, i2v
self.vocab = v2i.keys()
def sample(self, n):
b_idx = np.random.randint(0, len(self.x), n)
bx, by = self.x[b_idx], self.y[b_idx]
return bx, by
@property
def num_word(self):
return len(self.v2i)
def process_w2v_data(corpus, skip_window=2, method="skip_gram"):
all_words = [sentence.split(" ") for sentence in corpus]
all_words = np.array(list(itertools.chain(*all_words)))
# vocab sort by decreasing frequency for the negative sampling below (nce_loss).
vocab, v_count = np.unique(all_words, return_counts=True)
vocab = vocab[np.argsort(v_count)[::-1]]
print("all vocabularies sorted from more frequent to less frequent:\n", vocab)
v2i = {v: i for i, v in enumerate(vocab)}
i2v = {i: v for v, i in v2i.items()}
# pair data
pairs = []
js = [i for i in range(-skip_window, skip_window + 1) if i != 0]
for c in corpus:
words = c.split(" ")
w_idx = [v2i[w] for w in words]
if method == "skip_gram":
for i in range(len(w_idx)):
for j in js:
if i + j < 0 or i + j >= len(w_idx):
continue
pairs.append((w_idx[i], w_idx[i + j])) # (center, context) or (feature, target)
elif method.lower() == "cbow":
for i in range(skip_window, len(w_idx) - skip_window):
context = []
for j in js:
context.append(w_idx[i + j])
pairs.append(context + [w_idx[i]]) # (contexts, center) or (feature, target)
else:
raise ValueError
pairs = np.array(pairs)
print("5 example pairs:\n", pairs[:5])
if method.lower() == "skip_gram":
x, y = pairs[:, 0], pairs[:, 1]
elif method.lower() == "cbow":
x, y = pairs[:, :-1], pairs[:, -1]
else:
raise ValueError
return Dataset(x, y, v2i, i2v)
def set_soft_gpu(soft_gpu):
import tensorflow as tf
if soft_gpu:
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
我的实验结果
对实验结果的分析
由上图可以得知,经过训练后,模型对数字和字母具有了一定的表达能力,但是由于在字母的数据集里面放入了数字“9”,所以模型把“9”与字母判断成了相关性较大的向量。所以“9”会处在数字和字母中间