计算机的理解模式

向量化思维在机器学习中也非常常见,我们可以认为,一张图片是一个向量,一篇文章是一个向量,一句话也可以是一个向量。 这样的向量化表示优点也很明显,就是能被计算机计算,是计算机能够理解的模式。

转成词向量有什么用

  • 把这些对词语理解的向量通过特定方法组合起来,就可以有对某句话的理解了;
  • 可以在向量空间中找寻同义词,因为同义词表达的意思相近,往往在空间中距离也非常近;
  • 词语的距离换算。比如可以拿词语做加减法。公猫 - 母猫 就约等于 男人 - 女人。 如果我哪天想知道 莫烦Python 的友商有哪些,我可以做一下这样的计算:友商 = 莫烦Python - (腾讯 - 阿里)

转词向量的方法

  • CBOW
  • Skip-Gram

CBOW

是什么

CBOW 是 Continuous Bag-of-Word 的简称,同篇论文中, 还有另外一个一起提出的,十分相似的模型,Skip-Gram

作用

挑一个要预测的词,来学习这个词前后文中词语和预测词的关系

原理

用前后文的词向量来预测句中的某个词

nlp中的文本怎么变成向量 nlp向量化_tensorflow


这个模型的输入输出可以是:

# 1
# 输入:[我,爱] + [烦,Python]
# 输出:莫

# 2
# 输入:[爱,莫] + [Python, ,]
# 输出:烦

# 3
# 输入:[莫,烦] + [,,莫]
# 输出:Python

# 4
# 输入:[烦,Python] + [莫,烦]
# 输出:,

通过在大数据量的短语或文章中学习这样的词语关系,这个模型就能理解要预测的词前后文的关系。而图中彩色的词向量就是这种训练过程的一个副产品。

原作代码

我的代码

CBOW.py
# [Efficient Estimation of Word Representations in Vector Space](https://arxiv.org/pdf/1301.3781.pdf)
from tensorflow import keras
import tensorflow as tf
from utils import process_w2v_data  # this refers to utils.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)
from visual import show_w2v_word_embedding  # this refers to visual.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)

corpus = [
    # numbers
    "5 2 4 8 6 2 3 6 4",
    "4 8 5 6 9 5 5 6",
    "1 1 5 2 3 3 8",
    "3 6 9 6 8 7 4 6 3",
    "8 9 9 6 1 4 3 4",
    "1 0 2 0 2 1 3 3 3 3 3",
    "9 3 3 0 1 4 7 8",
    "9 9 8 5 6 7 1 2 3 0 1 0",

    # alphabets, expecting that 9 is close to letters
    "a t g q e h 9 u f",
    "e q y u o i p s",
    "q o 9 p l k j o k k o p",
    "h g y i u t t a e q",
    "i k d q r e 9 e a d",
    "o p d g 9 s a f g a",
    "i u y g h k l a s w",
    "o l u y a o g f s",
    "o p i u y g d a s j d l",
    "u k i l o 9 l j s",
    "y g i s h k j l f r f",
    "i o h n 9 9 d 9 f a 9",
]


class CBOW(keras.Model):
    def __init__(self, v_dim, emb_dim):
        super().__init__()
        self.v_dim = v_dim

        self.embeddings = keras.layers.Embedding(
            input_dim=v_dim, output_dim=emb_dim,  # [n_vocab, emb_dim]
            embeddings_initializer=keras.initializers.RandomNormal(0., 0.1),
        )

        # noise-contrastive estimation
        self.nce_w = self.add_weight(
            name="nce_w", shape=[v_dim, emb_dim],
            initializer=keras.initializers.TruncatedNormal(0., 0.1))  # [n_vocab, emb_dim]
        self.nce_b = self.add_weight(
            name="nce_b", shape=(v_dim,),
            initializer=keras.initializers.Constant(0.1))  # [n_vocab, ]

        self.opt = keras.optimizers.Adam(0.01)

    def call(self, x, training=None, mask=None):
        #定义模型的前向说白了,其实也就是把预测时的embedding词向量给拿出来, 然后求一个词向量平均,这样输出就够了。在用这个平均的向量预测一下目标值
        # x.shape = [n, skip_window*2]
        o = self.embeddings(x)          # [n, skip_window*2, emb_dim]
        o = tf.reduce_mean(o, axis=1)   # [n, emb_dim]

        return o

    # negative sampling: take one positive label and num_sampled negative labels to compute the loss
    # in order to reduce the computation of full softmax
    def loss(self, x, y, training=None):
        embedded = self.call(x, training) # [n, emb_dim]
        return tf.reduce_mean(
            # 使用nce_loss能够大大加速softmax求loss的方式,它不关心所有词汇loss, 而是抽样选取几个词汇用来传递loss,因为如果考虑所有词汇,那么当词汇量大的时候,会很慢
            tf.nn.nce_loss(
                weights=self.nce_w, biases=self.nce_b, labels=tf.expand_dims(y, axis=1),
                inputs=embedded, num_sampled=5, num_classes=self.v_dim))

    def step(self, x, y):
        # tensorflow2.0 中,用tape连接需要计算梯度的函数喝变量,方便求解同时也提升效率
        with tf.GradientTape() as tape:
            loss = self.loss(x, y, True)
            grads = tape.gradient(loss, self.trainable_variables)
        self.opt.apply_gradients(zip(grads, self.trainable_variables))
        return loss.numpy()


def train(model, data):
    for t in range(2500):
        bx, by = data.sample(8)
        loss = model.step(bx, by)
        if t % 200 == 0:
            print("step: {} | loss: {}".format(t, loss))


if __name__ == "__main__":
    d = process_w2v_data(corpus, skip_window=2, method="cbow")
    m = CBOW(d.num_word, 2) #2就是词向量维度emb_dim
    # m.summary()
    train(m, d)


    # plotting
    show_w2v_word_embedding(m, d, "./visual/results/cbow.png")
visual.py
import matplotlib.pyplot as plt
import numpy as np
import pickle
from matplotlib.pyplot import cm
import os
import utils

def show_matrix(_matrix):
    plt.imshow(_matrix,cmap="YlGn",vmin=_matrix.min(),vmax=_matrix.max())
    plt.xticks(np.arange(_matrix.shape[0]), fontsize=6, rotation=90)
    plt.yticks(np.arange(_matrix.shape[0]), np.arange(1,_matrix.shape[0] + 1), fontsize=6)
    plt.tight_layout()
    plt.show()

def show_tfidf(tfidf, vocab, filename):
    # [n_doc, n_vocab]
    plt.imshow(tfidf, cmap="YlGn", vmin=tfidf.min(), vmax=tfidf.max())
    plt.xticks(np.arange(tfidf.shape[1]), vocab, fontsize=6, rotation=90)
    plt.yticks(np.arange(tfidf.shape[0]), np.arange(1, tfidf.shape[0]+1), fontsize=6)
    plt.tight_layout()
    plt.savefig("./visual/results/%s.png" %filename, format="png", dpi=500)
    plt.show()


def show_w2v_word_embedding(model, data: utils.Dataset, path):
    word_emb = model.embeddings.get_weights()[0]
    for i in range(data.num_word):
        c = "blue"
        try:
            int(data.i2v[i])
        except ValueError:
            c = "red"
        plt.text(word_emb[i, 0], word_emb[i, 1], s=data.i2v[i], color=c, weight="bold")
    plt.xlim(word_emb[:, 0].min() - .5, word_emb[:, 0].max() + .5)
    plt.ylim(word_emb[:, 1].min() - .5, word_emb[:, 1].max() + .5)
    plt.xticks(())
    plt.yticks(())
    plt.xlabel("embedding dim1")
    plt.ylabel("embedding dim2")
    plt.savefig(path, dpi=300, format="png")
    plt.show()


def seq2seq_attention():
    with open("./visual/tmp/attention_align.pkl", "rb") as f:
        data = pickle.load(f)
    i2v, x, y, align = data["i2v"], data["x"], data["y"], data["align"]
    plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        x_vocab = [i2v[j] for j in np.ravel(x[i])]
        y_vocab = [i2v[j] for j in y[i, 1:]]
        plt.imshow(align[i], cmap="YlGn", vmin=0., vmax=1.)
        plt.yticks([j for j in range(len(y_vocab))], y_vocab)
        plt.xticks([j for j in range(len(x_vocab))], x_vocab)
        if i == 0 or i == 3:
            plt.ylabel("Output")
        if i >= 3:
            plt.xlabel("Input")
    plt.tight_layout()
    plt.savefig("./visual/results/seq2seq_attention.png", format="png", dpi=200)
    plt.show()


def all_mask_kinds():
    seqs = ["I love you", "My name is M", "This is a very long seq", "Short one"]
    vocabs = set((" ".join(seqs)).split(" "))
    i2v = {i: v for i, v in enumerate(vocabs, start=1)}
    i2v["<PAD>"] = 0  # add 0 idx for <PAD>
    v2i = {v: i for i, v in i2v.items()}

    id_seqs = [[v2i[v] for v in seq.split(" ")] for seq in seqs]
    padded_id_seqs = np.array([l + [0] * (6 - len(l)) for l in id_seqs])

    # padding mask
    pmask = np.where(padded_id_seqs == 0, np.ones_like(padded_id_seqs), np.zeros_like(padded_id_seqs))  # 0 idx is padding
    pmask = np.repeat(pmask[:, None, :], pmask.shape[-1], axis=1)  # [n, step, step]
    plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
    for i in range(1, 5):
        plt.subplot(2, 2, i)
        plt.imshow(pmask[i-1], vmax=1, vmin=0, cmap="YlGn")
        plt.xticks(range(6), seqs[i - 1].split(" "), rotation=45)
        plt.yticks(range(6), seqs[i - 1].split(" "),)
        plt.grid(which="minor", c="w", lw=0.5, linestyle="-")
    plt.tight_layout()
    plt.savefig("./visual/results/transformer_pad_mask.png", dpi=200)
    plt.show()

    # look ahead mask
    max_len = pmask.shape[-1]
    omask = ~np.triu(np.ones((max_len, max_len), dtype=np.bool), 1)
    omask = np.tile(np.expand_dims(omask, axis=0), [np.shape(seqs)[0], 1, 1])  # [n, step, step]
    omask = np.where(omask, pmask, 1)

    plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
    for i in range(1, 5):
        plt.subplot(2, 2, i)
        plt.imshow(omask[i - 1], vmax=1, vmin=0, cmap="YlGn")
        plt.xticks(range(6), seqs[i - 1].split(" "), rotation=45)
        plt.yticks(range(6), seqs[i - 1].split(" "), )
        plt.grid(which="minor", c="w", lw=0.5, linestyle="-")
    plt.tight_layout()
    plt.savefig("./visual/results/transformer_look_ahead_mask.png", dpi=200)
    plt.show()


def position_embedding():
    max_len = 500
    model_dim = 512
    pos = np.arange(max_len)[:, None]
    pe = pos / np.power(10000, 2. * np.arange(model_dim)[None, :] / model_dim)  # [max_len, model_dim]
    pe[:, 0::2] = np.sin(pe[:, 0::2])
    pe[:, 1::2] = np.cos(pe[:, 1::2])
    plt.imshow(pe, vmax=1, vmin=-1, cmap="rainbow")
    plt.ylabel("word position")
    plt.xlabel("embedding dim")
    plt.savefig("./visual/results/transformer_position_embedding.png", dpi=200)
    plt.show()


def transformer_attention_matrix(case=0):
    with open("./visual/tmp/transformer_attention_matrix.pkl", "rb") as f:
        data = pickle.load(f)
    src = data["src"][case]
    tgt = data["tgt"][case]
    attentions = data["attentions"]

    encoder_atten = attentions["encoder"]
    decoder_tgt_atten = attentions["decoder"]["mh1"]
    decoder_src_atten = attentions["decoder"]["mh2"]
    plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True

    plt.figure(0, (7, 7))
    plt.suptitle("Encoder self-attention")
    for i in range(3):
        for j in range(4):
            plt.subplot(3, 4, i * 4 + j + 1)
            plt.imshow(encoder_atten[i][case, j][:len(src), :len(src)], vmax=1, vmin=0, cmap="rainbow")
            plt.xticks(range(len(src)), src)
            plt.yticks(range(len(src)), src)
            if j == 0:
                plt.ylabel("layer %i" % (i+1))
            if i == 2:
                plt.xlabel("head %i" % (j+1))
    plt.tight_layout()
    plt.subplots_adjust(top=0.9)
    plt.savefig("./visual/results/transformer%d_encoder_self_attention.png" % case, dpi=200)
    plt.show()

    plt.figure(1, (7, 7))
    plt.suptitle("Decoder self-attention")
    for i in range(3):
        for j in range(4):
            plt.subplot(3, 4, i * 4 + j + 1)
            plt.imshow(decoder_tgt_atten[i][case, j][:len(tgt), :len(tgt)], vmax=1, vmin=0, cmap="rainbow")
            plt.xticks(range(len(tgt)), tgt, rotation=90, fontsize=7)
            plt.yticks(range(len(tgt)), tgt, fontsize=7)
            if j == 0:
                plt.ylabel("layer %i" % (i+1))
            if i == 2:
                plt.xlabel("head %i" % (j+1))
    plt.tight_layout()
    plt.subplots_adjust(top=0.9)
    plt.savefig("./visual/results/transformer%d_decoder_self_attention.png" % case, dpi=200)
    plt.show()

    plt.figure(2, (7, 8))
    plt.suptitle("Decoder-Encoder attention")
    for i in range(3):
        for j in range(4):
            plt.subplot(3, 4, i*4+j+1)
            plt.imshow(decoder_src_atten[i][case, j][:len(tgt), :len(src)], vmax=1, vmin=0, cmap="rainbow")
            plt.xticks(range(len(src)), src, fontsize=7)
            plt.yticks(range(len(tgt)), tgt, fontsize=7)
            if j == 0:
                plt.ylabel("layer %i" % (i+1))
            if i == 2:
                plt.xlabel("head %i" % (j+1))
    plt.tight_layout()
    plt.subplots_adjust(top=0.9)
    plt.savefig("./visual/results/transformer%d_decoder_encoder_attention.png" % case, dpi=200)
    plt.show()


def transformer_attention_line(case=0):
    with open("./visual/tmp/transformer_attention_matrix.pkl", "rb") as f:
        data = pickle.load(f)
    src = data["src"][case]
    tgt = data["tgt"][case]
    attentions = data["attentions"]

    decoder_src_atten = attentions["decoder"]["mh2"]

    tgt_label = tgt[1:11][::-1]
    src_label = ["" for _ in range(2)] + src[::-1]
    fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, figsize=(7, 14))

    for i in range(2):
        for j in range(2):
            ax[i, j].set_yticks(np.arange(len(src_label)))
            ax[i, j].set_yticklabels(src_label, fontsize=9)  # src
            ax[i, j].set_ylim(0, len(src_label)-1)
            ax_ = ax[i, j].twinx()
            ax_.set_yticks(np.linspace(ax_.get_yticks()[0], ax_.get_yticks()[-1], len(ax[i, j].get_yticks())))
            ax_.set_yticklabels(tgt_label, fontsize=9)      # tgt
            img = decoder_src_atten[-1][case, i + j][:10, :8]
            color = cm.rainbow(np.linspace(0, 1, img.shape[0]))
            left_top, right_top = img.shape[1], img.shape[0]
            for ri, c in zip(range(right_top), color):      # tgt
                for li in range(left_top):                 # src
                    alpha = (img[ri, li] / img[ri].max()) ** 8
                    ax[i, j].plot([0, 1], [left_top - li + 1, right_top - 1 - ri], alpha=alpha, c=c)
            ax[i, j].set_xticks(())
            ax[i, j].set_xlabel("head %i" % (j + 1 + i * 2))
            ax[i, j].set_xlim(0, 1)
    plt.subplots_adjust(top=0.9)
    plt.tight_layout()
    plt.savefig("./visual/results/transformer%d_encoder_decoder_attention_line.png" % case, dpi=100)


def self_attention_matrix(bert_or_gpt="bert", case=0):
    with open("./visual/tmp/"+bert_or_gpt+"_attention_matrix.pkl", "rb") as f:
        data = pickle.load(f)
    src = data["src"]
    attentions = data["attentions"]

    encoder_atten = attentions["encoder"]
    plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True

    s_len = 0
    for s in src[case]:
        if s == "<SEP>":
            break
        s_len += 1

    plt.figure(0, (7, 28))
    for j in range(4):
        plt.subplot(4, 1, j + 1)
        img = encoder_atten[-1][case, j][:s_len-1, :s_len-1]
        plt.imshow(img, vmax=img.max(), vmin=0, cmap="rainbow")
        plt.xticks(range(s_len-1), src[case][:s_len-1], rotation=90, fontsize=9)
        plt.yticks(range(s_len-1), src[case][1:s_len], fontsize=9)
        plt.xlabel("head %i" % (j+1))
    plt.subplots_adjust(top=0.9)
    plt.tight_layout()
    plt.savefig("./visual/results/"+bert_or_gpt+"%d_self_attention.png" % case, dpi=500)
    # plt.show()


def self_attention_line(bert_or_gpt="bert", case=0):
    with open("./visual/tmp/"+bert_or_gpt+"_attention_matrix.pkl", "rb") as f:
        data = pickle.load(f)
    src = data["src"][case]
    attentions = data["attentions"]

    encoder_atten = attentions["encoder"]

    s_len = 0
    print(" ".join(src))
    for s in src:
        if s == "<SEP>":
            break
        s_len += 1
    y_label = src[:s_len][::-1]
    fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, figsize=(7, 14))

    for i in range(2):
        for j in range(2):
            ax[i, j].set_yticks(np.arange(len(y_label)))
            ax[i, j].tick_params(labelright=True)
            ax[i, j].set_yticklabels(y_label, fontsize=9)     # input

            img = encoder_atten[-1][case, i+j][:s_len - 1, :s_len - 1]
            color = cm.rainbow(np.linspace(0, 1, img.shape[0]))
            for row, c in zip(range(img.shape[0]), color):
                for col in range(img.shape[1]):
                    alpha = (img[row, col] / img[row].max()) ** 5
                    ax[i, j].plot([0, 1], [img.shape[1]-col, img.shape[0]-row-1], alpha=alpha, c=c)
            ax[i, j].set_xticks(())
            ax[i, j].set_xlabel("head %i" % (j+1+i*2))
            ax[i, j].set_xlim(0, 1)
    plt.subplots_adjust(top=0.9)
    plt.tight_layout()
    plt.savefig("./visual/results/"+bert_or_gpt+"%d_self_attention_line.png" % case, dpi=100)


if __name__ == "__main__":
    os.makedirs("./visual/results", exist_ok=True)
    # all_mask_kinds()
    # seq2seq_attention()
    # position_embedding()
    transformer_attention_matrix(case=0)
    transformer_attention_line(case=0)

    # model = ["gpt", "bert", "bert_window_mask"][1]
    # case = 6
    # self_attention_matrix(model, case=case)
    # self_attention_line(model, case=case)
utils.py
import numpy as np
import datetime
import os
import requests
import pandas as pd
import re
import itertools

PAD_ID = 0


class DateData:
    def __init__(self, n):
        np.random.seed(1)
        self.date_cn = []
        self.date_en = []
        for timestamp in np.random.randint(143835585, 2043835585, n):
            date = datetime.datetime.fromtimestamp(timestamp)
            self.date_cn.append(date.strftime("%y-%m-%d"))
            self.date_en.append(date.strftime("%d/%b/%Y"))
        self.vocab = set(
            [str(i) for i in range(0, 10)] + ["-", "/", "<GO>", "<EOS>"] + [
                i.split("/")[1] for i in self.date_en])
        self.v2i = {v: i for i, v in enumerate(sorted(list(self.vocab)), start=1)}
        self.v2i["<PAD>"] = PAD_ID
        self.vocab.add("<PAD>")
        self.i2v = {i: v for v, i in self.v2i.items()}
        self.x, self.y = [], []
        for cn, en in zip(self.date_cn, self.date_en):
            self.x.append([self.v2i[v] for v in cn])
            self.y.append(
                [self.v2i["<GO>"], ] + [self.v2i[v] for v in en[:3]] + [
                    self.v2i[en[3:6]], ] + [self.v2i[v] for v in en[6:]] + [
                    self.v2i["<EOS>"], ])
        self.x, self.y = np.array(self.x), np.array(self.y)
        self.start_token = self.v2i["<GO>"]
        self.end_token = self.v2i["<EOS>"]

    def sample(self, n=64):
        bi = np.random.randint(0, len(self.x), size=n)
        bx, by = self.x[bi], self.y[bi]
        decoder_len = np.full((len(bx),), by.shape[1] - 1, dtype=np.int32)
        return bx, by, decoder_len

    def idx2str(self, idx):
        x = []
        for i in idx:
            x.append(self.i2v[i])
            if i == self.end_token:
                break
        return "".join(x)

    @property
    def num_word(self):
        return len(self.vocab)


def pad_zero(seqs, max_len):
    padded = np.full((len(seqs), max_len), fill_value=PAD_ID, dtype=np.long)
    for i, seq in enumerate(seqs):
        padded[i, :len(seq)] = seq
    return padded


def maybe_download_mrpc(save_dir="./MRPC/", proxy=None):
    train_url = 'https://mofanpy.com/static/files/MRPC/msr_paraphrase_train.txt'
    test_url = 'https://mofanpy.com/static/files/MRPC/msr_paraphrase_test.txt'
    os.makedirs(save_dir, exist_ok=True)
    proxies = {"http": proxy, "https": proxy}
    for url in [train_url, test_url]:
        raw_path = os.path.join(save_dir, url.split("/")[-1])
        if not os.path.isfile(raw_path):
            print("downloading from %s" % url)
            r = requests.get(url, proxies=proxies)
            with open(raw_path, "w", encoding="utf-8") as f:
                f.write(r.text.replace('"', "<QUOTE>"))
                print("completed")


def _text_standardize(text):
    text = re.sub(r'—', '-', text)
    text = re.sub(r'–', '-', text)
    text = re.sub(r'―', '-', text)
    text = re.sub(r" \d+(,\d+)?(\.\d+)? ", " <NUM> ", text)
    text = re.sub(r" \d+-+?\d*", " <NUM>-", text)
    return text.strip()


def _process_mrpc(dir="./MRPC", rows=None):
    data = {"train": None, "test": None}
    files = os.listdir(dir)
    for f in files:
        df = pd.read_csv(os.path.join(dir, f), sep='\t', nrows=rows)
        k = "train" if "train" in f else "test"
        data[k] = {"is_same": df.iloc[:, 0].values, "s1": df["#1 String"].values, "s2": df["#2 String"].values}
    vocab = set()
    for n in ["train", "test"]:
        for m in ["s1", "s2"]:
            for i in range(len(data[n][m])):
                data[n][m][i] = _text_standardize(data[n][m][i].lower())
                cs = data[n][m][i].split(" ")
                vocab.update(set(cs))
    v2i = {v: i for i, v in enumerate(sorted(vocab), start=1)}
    v2i["<PAD>"] = PAD_ID
    v2i["<MASK>"] = len(v2i)
    v2i["<SEP>"] = len(v2i)
    v2i["<GO>"] = len(v2i)
    i2v = {i: v for v, i in v2i.items()}
    for n in ["train", "test"]:
        for m in ["s1", "s2"]:
            data[n][m+"id"] = [[v2i[v] for v in c.split(" ")] for c in data[n][m]]
    return data, v2i, i2v


class MRPCData:
    num_seg = 3
    pad_id = PAD_ID

    def __init__(self, data_dir="./MRPC/", rows=None, proxy=None):
        maybe_download_mrpc(save_dir=data_dir, proxy=proxy)
        data, self.v2i, self.i2v = _process_mrpc(data_dir, rows)
        self.max_len = max(
            [len(s1) + len(s2) + 3 for s1, s2 in zip(
                data["train"]["s1id"] + data["test"]["s1id"], data["train"]["s2id"] + data["test"]["s2id"])])

        self.xlen = np.array([
            [
                len(data["train"]["s1id"][i]), len(data["train"]["s2id"][i])
             ] for i in range(len(data["train"]["s1id"]))], dtype=int)
        x = [
            [self.v2i["<GO>"]] + data["train"]["s1id"][i] + [self.v2i["<SEP>"]] + data["train"]["s2id"][i] + [self.v2i["<SEP>"]]
            for i in range(len(self.xlen))
        ]
        self.x = pad_zero(x, max_len=self.max_len)
        self.nsp_y = data["train"]["is_same"][:, None]

        self.seg = np.full(self.x.shape, self.num_seg-1, np.int32)
        for i in range(len(x)):
            si = self.xlen[i][0] + 2
            self.seg[i, :si] = 0
            si_ = si + self.xlen[i][1] + 1
            self.seg[i, si:si_] = 1

        self.word_ids = np.array(list(set(self.i2v.keys()).difference(
            [self.v2i[v] for v in ["<PAD>", "<MASK>", "<SEP>"]])))

    def sample(self, n):
        bi = np.random.randint(0, self.x.shape[0], size=n)
        bx, bs, bl, by = self.x[bi], self.seg[bi], self.xlen[bi], self.nsp_y[bi]
        return bx, bs, bl, by

    @property
    def num_word(self):
        return len(self.v2i)

    @property
    def mask_id(self):
        return self.v2i["<MASK>"]


class MRPCSingle:
    pad_id = PAD_ID

    def __init__(self, data_dir="./MRPC/", rows=None, proxy=None):
        maybe_download_mrpc(save_dir=data_dir, proxy=proxy)
        data, self.v2i, self.i2v = _process_mrpc(data_dir, rows)

        self.max_len = max([len(s) + 2 for s in data["train"]["s1id"] + data["train"]["s2id"]])
        x = [
            [self.v2i["<GO>"]] + data["train"]["s1id"][i] + [self.v2i["<SEP>"]]
            for i in range(len(data["train"]["s1id"]))
        ]
        x += [
            [self.v2i["<GO>"]] + data["train"]["s2id"][i] + [self.v2i["<SEP>"]]
            for i in range(len(data["train"]["s2id"]))
        ]
        self.x = pad_zero(x, max_len=self.max_len)
        self.word_ids = np.array(list(set(self.i2v.keys()).difference([self.v2i["<PAD>"]])))

    def sample(self, n):
        bi = np.random.randint(0, self.x.shape[0], size=n)
        bx = self.x[bi]
        return bx

    @property
    def num_word(self):
        return len(self.v2i)


class Dataset:
    def __init__(self, x, y, v2i, i2v):
        self.x, self.y = x, y
        self.v2i, self.i2v = v2i, i2v
        self.vocab = v2i.keys()

    def sample(self, n):
        b_idx = np.random.randint(0, len(self.x), n)
        bx, by = self.x[b_idx], self.y[b_idx]
        return bx, by

    @property
    def num_word(self):
        return len(self.v2i)


def process_w2v_data(corpus, skip_window=2, method="skip_gram"):
    all_words = [sentence.split(" ") for sentence in corpus]
    all_words = np.array(list(itertools.chain(*all_words)))
    # vocab sort by decreasing frequency for the negative sampling below (nce_loss).
    vocab, v_count = np.unique(all_words, return_counts=True)
    vocab = vocab[np.argsort(v_count)[::-1]]

    print("all vocabularies sorted from more frequent to less frequent:\n", vocab)
    v2i = {v: i for i, v in enumerate(vocab)}
    i2v = {i: v for v, i in v2i.items()}

    # pair data
    pairs = []
    js = [i for i in range(-skip_window, skip_window + 1) if i != 0]

    for c in corpus:
        words = c.split(" ")
        w_idx = [v2i[w] for w in words]
        if method == "skip_gram":
            for i in range(len(w_idx)):
                for j in js:
                    if i + j < 0 or i + j >= len(w_idx):
                        continue
                    pairs.append((w_idx[i], w_idx[i + j]))  # (center, context) or (feature, target)
        elif method.lower() == "cbow":
            for i in range(skip_window, len(w_idx) - skip_window):
                context = []
                for j in js:
                    context.append(w_idx[i + j])
                pairs.append(context + [w_idx[i]])  # (contexts, center) or (feature, target)
        else:
            raise ValueError
    pairs = np.array(pairs)
    print("5 example pairs:\n", pairs[:5])
    if method.lower() == "skip_gram":
        x, y = pairs[:, 0], pairs[:, 1]
    elif method.lower() == "cbow":
        x, y = pairs[:, :-1], pairs[:, -1]
    else:
        raise ValueError
    return Dataset(x, y, v2i, i2v)


def set_soft_gpu(soft_gpu):
    import tensorflow as tf
    if soft_gpu:
        gpus = tf.config.experimental.list_physical_devices('GPU')
        if gpus:
            # Currently, memory growth needs to be the same across GPUs
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
            logical_gpus = tf.config.experimental.list_logical_devices('GPU')
            print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")

我的实验结果

nlp中的文本怎么变成向量 nlp向量化_Python_02

对实验结果的分析

由上图可以得知,经过训练后,模型对数字和字母具有了一定的表达能力,但是由于在字母的数据集里面放入了数字“9”,所以模型把“9”与字母判断成了相关性较大的向量。所以“9”会处在数字和字母中间