</dependency>使用的是 0.3 这个版本,该版本就包含上述3方CH jdbc包<!-- CH JDBC版本推荐使用 0.3, 0.4的版本是要 JDK 17 -->
 <clickhouse-jdbc.version>0.3.2-patch11</clickhouse-jdbc.version>## 自定义Source


测试表映射实体类,该表仅有一个name字段@Data
 @NoArgsConstructor
 @AllArgsConstructor
 public class CHTestPO {private String name;}
Flink Clickhouse Sourcepublic class ClickHouseSource implements SourceFunction {
private final String URL;
private final String SQL;

public ClickHouseSource(String URL, String SQL) {
    this.URL = URL;
    this.SQL = SQL;
}

@Override
public void run(SourceContext<CHTestPO> output) throws Exception {
    
    // Properties是持久化的属性集 Properties的key和value都是字符串
    Properties properties = new Properties();
    ClickHouseDataSource clickHouseDataSource = new ClickHouseDataSource(URL, properties);

    // 使用 try-with-resource 方式关闭JDBC连接 无需手动关闭
    try (ClickHouseConnection conn = clickHouseDataSource.getConnection()) {

        // clickhouse 通过游标的方式读取数据
        Statement stmt = conn.createStatement();
        ResultSet rs = stmt.executeQuery(SQL);
        while (rs.next()) {
            String name = rs.getString(1);
            output.collect(new CHTestPO(name));
        }
    }

}

@Override
public void cancel() {

}}
## 自定义Sink


### 需额外引入依赖<!-- Flink-Connector-Jdbc -->
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-jdbc_${scala.binary.version}</artifactId>
    </dependency>### Java 对sql语句处理的两个对象


1. PreparedStatement对象:能够对预编译之后的sql语句进行处理【SQL 语句预编译:通过`占位符'?'`实现,可以防止sql注入】
2. Statement对象:只能对静态的sql语句进行处理


### 核心代码/**
 * 使用 Flink-jdbc-connector + 批量写入 + sql语句的预编译 写入 Clickhouse
 */
 public class ClickHouseJdbcSink {private final SinkFunction<T> sink;
private final static String NA = "null";

public ClickHouseJdbcSink(String sql, int batchSize, String url) {

    sink = JdbcSink.sink(
            sql,
            // 对sql语句进行预编译
            new ClickHouseJdbcStatementBuilder<T>(),
            // 设置批量插入数据
            new JdbcExecutionOptions.Builder().withBatchSize(batchSize).build(),
            // 设置ClickHouse连接配置
            new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                    .withUrl(url)
                    .build()
    );

}

public SinkFunction<T> getSink() {
    return this.sink;
}

/\*\** 对预编译之后的sql语句进行占位符替换
 *
 * @param ps: PreparedStatement对象 下标从 1 开始
 * @param fields: clickhouse表PO对象的属性字段
 * @param object: clickhouse表PO对象的属性字段所对应的数据类型
 */
 public static void setPreparedStatement(
 PreparedStatement ps,
 Field[] fields,
 Object object) throws IllegalAccessException, SQLException {// 遍历 Field[]
    for (int i = 1; i <= fields.length; i++) {
        // 取出每个Field实例
        Field field = fields[i - 1];
        // 指示反射的对象在使用时应该取消 Java 语言访问检查
        field.setAccessible(true);
        // 通过Field实例的get方法返回指定的对象
        Object o = field.get(object);
        if (o == null) {
            ps.setNull(i, 0);
            continue;
        }

        // 这里统一设为字符型
        String fieldValue = o.toString();

        // 变量和常量的比较,通常将常量放前,可以避免空指针
        if (!NA.equals(fieldValue) && !"".equals(fieldValue)) {
            // 替换对应位置的占位符
            ps.setObject(i, fieldValue);
        } else {
            ps.setNull(i, 0);
        }
    }
}}
对sql语句进行预编译@Slf4j
 public class ClickHouseJdbcStatementBuilder implements JdbcStatementBuilder {@Override
public void accept(PreparedStatement preparedStatement, T t) throws SQLException {

    /\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\** Java通过反射获取类的字段:
 *
 * 1. getDeclaredFields():获取所有的字段,不会获取父类的字段
 * 2. getFields(): 只能会public字段,获取包含父类的字段
 *
 * *********************/Field[] fields = t.getClass().getDeclaredFields();

    // 将获取到的字段替换sql预编译之后的占位符。
    try {
        ClickHouseJdbcSink.setPreparedStatement(preparedStatement, fields, t);
    } catch (IllegalAccessException e) {
        log.error("sql 预编译失败", e);
        e.printStackTrace();
    }

}}
## ClickHouse读写工具类


![image-20231209233006017]()public class ClickHouseUtil {
private static final String URL;

static {
    ParameterTool parameterTool = ParameterUtil.getParameters();
    URL = parameterTool.get("clickhouse.url");
}

/\*\** 读取clickhouse
 */
 public static DataStream read(StreamExecutionEnvironment env, String sql) {
 return env.addSource(new ClickHouseSource(URL, sql));
 }/\*\** 批量写入ClickHouse
 */
 public static DataStreamSink batchWrite(
 DataStream dataStream,
 String sql,
 int batchSize) {//生成 SinkFunction
    ClickHouseJdbcSink<T> clickHouseJdbcSink =
            new ClickHouseJdbcSink<T>(sql, batchSize, URL);
    return dataStream.addSink(clickHouseJdbcSink.getSink());
}}
## 测试一下public class ClickHouseUtilTest {
@DisplayName("测试Flink+jdbc+游标读取Clickhouse")
@Test