递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。

于是,fact(n)用递归的方式写出来就是:

def fact(n):
    if n==1:
        return 1
    return n * fact(n - 1

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。

 尾递归()

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况.

上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

def fact(n):
    return fact_iter(n, 1)

def fact_iter(num, product):
    if num == 1:
        return product
    return fact_iter(num - 1, num * product)

可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1num * product在函数调用前就会被计算,不影响函数调用

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出

小结

使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

练习

汉诺塔的移动可以用递归函数非常简单地实现。

请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A、B、C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的方法,例如:

参考其他语言讲解

def move(n, a, b, c):  #定义move函数
   if n ==1:                # 如果只有1个圆盘

       print a, '-->', c  #圆盘路径直接从A到C就可以了
       return              #结束
   move(n-1, a, c, b)  #如果不是一个圆盘,那首先应该将n-1个圆盘从A移动到B
   print a, '-->', c      #将A柱上最后一个圆盘从A移动到C就

   move(n-1, b, a, c) #将B上的n-1个圆盘移动到C
move(4, 'A', 'B', 'C')

python:

def move(n,a,b,c):
  if n==1:
    print(a,'->',c)
   else:
    move(n-1,a,c,b)
    move(1,a,b,c)
    move(n-1,b,a,c)