MySQL支持诸多存储引擎,各种存储引擎对索引的支持也各不相同,正因为如此MySQL数据库支持多种索引类型,如B-Tree索引,哈希索引,全文索引等等。本文只关注B-Tree索引。
文章分为两个个部分;
1、MySQL数据库索引背后的数据结构与算法原理;
2、结合MySQL数据库中MyISAM和InnoDB数据存储引擎中索引的架构实现讨论聚集索引、非聚集索引及覆盖索引等话题。
从数据结构与算法角度理解MySQL
- 数据结构及算法基础
- 索引的本质
- B-Tree和B+Tree
- B-Tree和B+Tree树的区别
- 为什么使用的是B树或者B+树而不是二叉搜索树或者红黑树等数据结构呢?
- 数据库为什么使用B+树而不是B树呢?
- MySQL索引实现
- MyISQM索引实现
- InnoDB索引实现
数据结构及算法基础
索引的本质
索引的本质:高效获取数据的一种数据结构。
数据查询是数据库最主要的功能之一。我们希望查询速度能尽可能的快,因此数据库的设计者都会从查询算法的角度进行优化。最基础的查询算法是顺序查找,时间复杂度为O(N),这种查询算法最简单,不需要建立额外的数据结构,按表遍历即可,但代价是非常大。而其他更快的查询算法都是有条件的,它们只能应用在特定的数据结构上。
查找算法 | 平均时间复杂度 | 查找条件 | 算法描述 |
顺序查找 | 无序或有序队列 | 按顺序比较每个元素,直到找到关键字为止 | |
二分查找 | 有序数组 | 查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。 如果在某一步骤数组为空,则代表找不到。 | |
二叉树排序树查找 | 二叉排序树 | 在二叉查找树b中查找x的过程为:1. 若b是空树,则搜索失败;2. 若x等于b的根节点的数据域之值,则查找成功;3.若x小于b的根节点的数据域之值,则搜索左子树;4.查找右子树。 | |
哈希查找 | $O(1) | 先建立哈希表 | 根据键值方式(Key value)进行查找,通过散列函数,定位数据元素。 |
分块查找 | $O(logn) | 无序或有序队列 | 将n个数据元素"按块有序"划分为m块(m ≤ n)。每一块中的结点不必有序,但块与块之间必须"按块有序";即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……。然后使用二分查找及顺序查找。 |
上图展示一种可能的索引方式。左边是数据表,右边是一颗二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在的复杂度内获取到相应数据。
B-Tree和B+Tree
上图是B+Tree,大多数数据库系统及文件系统都采用这种数据结构作为索引结构。
B-tree是满足下列条件的数据结构:
d为大于1的一个正整数,称为B-Tree的度。
h为一个正整数,称为B-Tree的高度。
每个非叶子节点由n-1个key和n个指针组成,其中d<=n<=2d。
每个叶子节点最少包含一个key和两个指针,最多包含2d-1个key和2d个指针,叶节点的指针均为null 。
所有叶节点具有相同的深度,等于树高h。
key和指针互相间隔,节点两端是指针。
一个节点中的key从左到右非递减排列。
所有节点组成树结构。
每个指针要么为null,要么指向另外一个节点。
如果某个指针在节点node最左边且不为null,则其指向节点的所有key小于v(key1),其中v(key1)为node的第一个key的值。
如果某个指针在节点node最右边且不为null,则其指向节点的所有key大于v(keym),其中v(keym)为node的最后一个key的值。
如果某个指针在节点node的左右相邻key分别是keyi和keyi+1且不为null,则其指向节点的所有key小于v(keyi+1)且大于v(keyi)。
B+tree性质:
1.)n棵子tree的节点包含n个关键字,不用来保存数据而是保存数据的索引。
2.)所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.)所有的非终端结点可以看成是索引部分,结点中仅含其子树中的最大(或最小)关键字。
4.)B+ 树中,数据对象的插入和删除仅在叶节点上进行。
5.)B+树有2个头指针,一个是树的根节点,一个是最小关键码的叶节点。
B-Tree和B+Tree树的区别
1、在B树中,你可以将键和值存放在内部节点和叶子节点;但在B+树中,内部节点都是键,没有值,叶子节点同时存放键和值。
2、B+树的叶子节点有一条链相连,而B树的叶子节点各自独立。
3、B+树有2个头指针,一个是树的根节点,一个是最小关键码的叶节点。
为什么使用的是B树或者B+树而不是二叉搜索树或者红黑树等数据结构呢?
二叉查找树的时间复杂度是O(logN),查找次数和比较次数较少,但是对于磁盘的IO次数,最坏情况下磁盘的IO次数由树的高度决定,所以减少磁盘IO次数就必须压缩树的高度,让瘦高的树尽量变成矮胖的树,这样B树就诞生了。
数据库为什么使用B+树而不是B树呢?
1、B树只适合随机检索,而B+树同时支持随机检索和顺序检索;
2、B+树空间利用率更高,可减少I/O次数,磁盘读写代价更低。一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗。B+树的内部结点并没有指向关键字具体信息的指针,只是作为索引使用,其内部结点比B树小,盘块能容纳的结点中关键字数量更多,一次性读入内存中可以查找的关键字也就越多,相对的,IO读写次数也就降低了。而IO读写次数是影响索引检索效率的最大因素;
3、B+树的查询效率更加稳定。B树搜索有可能会在非叶子结点结束,越靠近根节点的记录查找时间越短,只要找到关键字即可确定记录的存在,其性能等价于在关键字全集内做一次二分查找。而在B+树中,顺序检索比较明显,随机检索时,任何关键字的查找都必须走一条从根节点到叶节点的路,所有关键字的查找路径长度相同,导致每一个关键字的查询效率相当。
4、B-树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。B+树的叶子节点使用指针顺序连接在一起,只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作。
5、增删文件(节点)时,效率更高。因为B+树的叶子节点包含所有关键字,并以有序的链表结构存储,这样可很好提高增删效率。
MySQL索引实现
在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,本文主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式。
MyISQM索引实现
MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。下图是MyISAM索引的原理图:
这里设表一共有三列,假设我们以Col1为主键,则上图是一个MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。如果我们在Col2上建立一个辅助索引,则此索引的结构如下图所示:
同样也是一颗B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。
MyISAM的索引方式也叫做“非聚集”的,之所以这么称呼是为了与InnoDB的聚集索引区分。
InnoDB索引实现
虽然InnoDB也使用B+Tree作为索引结构,但具体实现方式却与MyISAM截然不同。
第一个重大区别是InnoDB的数据文件本身就是索引文件。从上文知道,MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。
上图是InnoDB主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录。这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。第二个与MyISAM索引的不同是InnoDB的辅助索引data域存储相应记录主键的值而不是地址。换句话说,InnoDB的所有辅助索引都引用主键作为data域。例如,下图为定义在Col3上的一个辅助索引:
这里以英文字符的ASCII码作为比较准则。聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。
了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助,例如知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有辅助索引都引用主索引,过长的主索引会令辅助索引变得过大。再例如,用非单调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一颗B+Tree,非单调的主键会造成在插入新记录时数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。