python数据采集

  • 一、采集豆瓣电影 Top 250的数据采集
  • 1.进入豆瓣 Top 250的网页
  • 2.进入开发者选项
  • 3.进入top250中去查看相关配置
  • 4.添加其第三方库
  • 5.进行爬虫的编写
  • 反反爬处理--伪装浏览器
  • 6、bs4库中beautifulSoup类的使用
  • 7、储存到CSV中
  • 备注
  • 二、安居客数据采集
  • 1.安居客的网页
  • 2.导入from lxml import etree
  • 3.将采集的字符串转换为html格式:etree.html
  • 4.转换后的数据调用xPath(xpath的路径):data.xpath(路径表达式)
  • 三、拉勾网的数据采集
  • (一)requests数据采集
  • 1.导入库
  • 2.向服务器发送请求
  • 3.下载数据
  • (二)post方式请求(参数不在url里)
  • 1.通过网页解析找到post参数(请求数据Fromdata)并且参数定义到字典里
  • 2.服务器发送请求调用requests.post(data=fromdata)
  • (三)数据解析——json
  • 1.导入 import——json
  • 2. 将采集的json数据格式转换为python字典:json.load(json格式数据)
  • 3.通过字典中的键访问值
  • (四)数据存储到mysql中
  • 1.下载并导入pymysql import pymysql
  • 2.建立链接:conn=pymysql.Connenct(host,port,user,oassword,db,charset='utf8')
  • 3.写sql语句
  • 4.定义游标:cursor=conn.cursor()
  • 5.使用定义的游标执行sql语句:cursor.execute()sql
  • 6.向数据库提交数据:conn.commit()
  • 7.关闭游标:cursor.close()
  • 8.关闭链接:conn.close()
  • 四、疫情数据采集
  • 五、scrapy 数据采集
  • (一)创建爬虫步骤
  • 1.创建项目,在命令行输入:scrapy startproject 项目名称
  • 2.创建爬虫文件:在命令行定位到spiders文件夹下:scrapy genspider 爬虫文件名 网站域名
  • 3.运行程序:scrapy crawl 爬虫文件名
  • (二)scrapy文件结构
  • 1.spiders文件夹:编写解析程序
  • 2.__init__.py:包标志文件,只有存在这个python文件的文件夹才是包
  • 3.items.py:定义数据结构,用于定义爬取的字段
  • 4.middlewares.py:中间件
  • 5.pipliness.py:管道文件,用于定义数据存储方向
  • 6.settings.py:配置文件,通常配置用户代理,管道文件开启。
  • (三)scrapy爬虫框架使用流程
  • 1.配置settings.py文件:
  • (1)User-Agent:"浏览器参数"
  • (2)ROBOTS协议:Fasle
  • (3)修改ITEM_PIPLINES:打开管道
  • 2.在item.py中定义爬取的字段
  • 3.在spiders文件夹中的parse()方法中写解析代码并将解析结果提交给item对象
  • 4.在piplines.py中定义存储路径
  • 5.分页采集:
  • 1)查找url的规律
  • 2)在爬虫文件中先定义页面变量,使用if判断和字符串格式化方法生成新url
  • 3)yield scrapy Requests(url,callback=parse)
  • 案例
  • (一)安居客数据采集
  • 1.ajk.py中
  • 2.pipelines.py中
  • 3.items.py中
  • 4.settings.py中
  • 5.middlewares.py中
  • (二)太平洋汽车数据采集
  • 1.tpy.py中
  • 2.pipelines.py中
  • 3.items.py中
  • 4.settings.py中
  • 5.middlewares.py中


一、采集豆瓣电影 Top 250的数据采集

1.进入豆瓣 Top 250的网页

2.进入开发者选项

python 采集图片 python采集数据代码_数据采集

3.进入top250中去查看相关配置

python 采集图片 python采集数据代码_python 采集图片_02

4.添加其第三方库

python 采集图片 python采集数据代码_数据采集_03


在其中进行添加

python 采集图片 python采集数据代码_python_04

添加bs4、requests、lxml

5.进行爬虫的编写

(1)导入:import requests
(2)向服务器发送请求 requests=requests.get(url)
(3)获取网页数据:html =request.text

反反爬处理–伪装浏览器

1.定义变量geaders={用户代理}
2.向服务器发送请求时携带上代理信息:response=requests.get(url,headrs = h)

6、bs4库中beautifulSoup类的使用

1.导入:from bs4 import BeautifulSoup
2.定义soup对象:soup = BeautifulSoup(html,lxml)
3.使用soup对象调用类方法select(css选择器)
4.提取数据:
get_text()
text
string

7、储存到CSV中

1.先将数据存放到列表里
1.创建csv文档with open(‘xxx.csv’,‘a’,newlie=’’) as f:
3.调用CSV模块中的write()方法:w=csv.write(f
4.将列表中的数据写入文档:w.writerows(listdata)

import requests,csv
from bs4 import BeautifulSoup
def getHtml(url):
    # 数据采集
    h ={
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'
    }# 看下面的备注
    response =requests.get(url,headers = h)
    html=response.text
    # print(html)
    # 数据解析:正则,BeautifulSoup,Xpath
    soup=BeautifulSoup(html,'lxml')
    filmtitle =soup.select('div.hd > a > span:nth-child(1)')
    ct=soup.select('div.bd > p:nth-child(1)')
    score=soup.select(' div.bd > div > span.rating_num')
    evalue =soup.select('div.bd > div > span:nth-child(4)')
    # print(ct)
    flimlist=[];
    for t,c,s,e in zip(filmtitle,ct,score,evalue):
        title = t.text
        content= c.text
        filmscore=s.text
        num=e.text.strip('人评价')
        director=content.strip().split()[1]
        if "主演:" in content:
            actor=content.strip().split('主演:')[1].split()[0]
        else:
            actor=None
        year=content.strip().split('/')[-3].split()[-1]
        area=content.strip().split('/')[-2].split()
        filmtype=content.strip().split('/')[-1].split()
        listdata=[title,director,actor,year,area,filmtype,num,filmscore]
        flimlist.append(listdata)
    print(flimlist)
        # 存储数据
    with open('douban250.csv','a',encoding='utf-8',newline="") as f:
        w=csv.writer(f)
        w.writerows(flimlist)
# 函数调用
with open('douban250.csv','a',encoding='utf-8',newline="") as f:
    w=csv.writer(f)
    listtitle=['title','director','actor','year','area','type','score','evealueate']
    w.writerow(listtitle)
for i in range(0,226,25):
    getHtml('https://movie.douban.com/top250?start=%s&filter='%(i))

备注

h 是到网站的开发者页面去寻找这句话就是

python 采集图片 python采集数据代码_python_05

二、安居客数据采集

1.安居客的网页

2.导入from lxml import etree

3.将采集的字符串转换为html格式:etree.html

4.转换后的数据调用xPath(xpath的路径):data.xpath(路径表达式)

import requests
from lxml import etree
def getHtml(url):
    h={
        'user - agent': 'Mozilla / 5.0(Windows NT 10.0;Win64;x64)'
    }
    response = requests.get(url,headers=h)
    html=response.text
    # 数据解析
    data=etree.HTML(html)
    print(data)
    name=data.xpath('//span[@class="items-name"]/text()')
    print(name)
getHtml("https://bj.fang.anjuke.com/?from=AF_Home_switchcity")

三、拉勾网的数据采集

(一)requests数据采集

1.导入库

2.向服务器发送请求

3.下载数据

(二)post方式请求(参数不在url里)

1.通过网页解析找到post参数(请求数据Fromdata)并且参数定义到字典里

2.服务器发送请求调用requests.post(data=fromdata)

(三)数据解析——json

1.导入 import——json

2. 将采集的json数据格式转换为python字典:json.load(json格式数据)

3.通过字典中的键访问值

(四)数据存储到mysql中

1.下载并导入pymysql import pymysql

2.建立链接:conn=pymysql.Connenct(host,port,user,oassword,db,charset=‘utf8’)

3.写sql语句

4.定义游标:cursor=conn.cursor()

5.使用定义的游标执行sql语句:cursor.execute()sql

6.向数据库提交数据:conn.commit()

7.关闭游标:cursor.close()

8.关闭链接:conn.close()

这次的爬虫是需要账户的所以h是使用的Request Headers中的数据

python 采集图片 python采集数据代码_python_06

import requests, json,csv,time,pymysql

keyword = input("请输入查询的职务")

def getHrml(url):
    # 数据采集
    h = {
        'accept': 'application/json, text/javascript, */*; q=0.01',
        'accept-encoding': 'gzip, deflate, br',
        'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8',
        'content-length': '25',
        'content-type': 'application/x-www-form-urlencoded; charset=UTF-8',
        'cookie': 'JSESSIONID=ABAAAECABIEACCA0BB433B062238BA98562B2C4DC03D33A; WEBTJ-ID=20210713%E4%B8%8A%E5%8D%889:11:14091114-17a9d6b06f45b5-0f9ac091808606-6373264-1327104-17a9d6b06f531f; RECOMMEND_TIP=true; PRE_UTM=; PRE_LAND=https%3A%2F%2Fwww.lagou.com%2F; user_trace_token=20210713091113-ad1a1d99-8c61-4649-86de-caa60fecdd96; LGUID=20210713091113-57f6a01d-c07d-4d7d-a226-089ac21198e3; privacyPolicyPopup=false; sajssdk_2015_cross_new_user=1; sensorsdata2015session=%7B%7D; _ga=GA1.2.1716223378.1626138675; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1626138675; LGSID=20210713091113-eef33caa-4fff-426f-a12f-d9ccdc49edab; PRE_HOST=www.baidu.com; PRE_SITE=https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3D1PmCn3%5F6suzwEKiV8mGzsySp2-ZqV4jK6AtxxnmDtde%26wd%3D%26eqid%3Dabee6e3e0030ff6d0000000360ece82b; _gid=GA1.2.1912526675.1626138675; index_location_city=%E5%85%A8%E5%9B%BD; hasDeliver=0; __lg_stoken__=a754529f8432345bce5a926838ce3ba208e2eb1b5e2aa7d40fdad449dd8fbc5fc68b31dd9e0579699a42fe25571f070de507bfb1ccd0d4cd334b58732e2966e98e41f591c3d3; gate_login_token=1a7455a0d75a2c4afa5e07a08311e9e93141da1f752d719873fcd5aadaffe363; LG_LOGIN_USER_ID=8ed9d2581d433f9543578454ebfed80f4ee5c5bee7be1dd4632f11fafed9de49; LG_HAS_LOGIN=1; _putrc=022DEADA81248A58123F89F2B170EADC; login=true; unick=%E7%94%A8%E6%88%B77650; showExpriedIndex=1; showExpriedCompanyHome=1; showExpriedMyPublish=1; __SAFETY_CLOSE_TIME__22228481=1; X_HTTP_TOKEN=3e22ba0cf8e3ba80701931626146c8e7a89d916f14; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%2222228481%22%2C%22first_id%22%3A%2217a9d6b080a526-0c7af230c4b51d-6373264-1327104-17a9d6b080b931%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%2C%22%24latest_referrer%22%3A%22%22%2C%22%24os%22%3A%22Windows%22%2C%22%24browser%22%3A%22Chrome%22%2C%22%24browser_version%22%3A%2291.0.4472.124%22%2C%22lagou_company_id%22%3A%22%22%7D%2C%22%24device_id%22%3A%2217a9d6b080a526-0c7af230c4b51d-6373264-1327104-17a9d6b080b931%22%7D; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1626139109; TG-TRACK-CODE=search_code; LGRID=20210713091903-7c87ddc0-90c1-4e87-8970-4dbeefbb4c24; SEARCH_ID=2061158f47e14c7b87878919bbf28317',
        'origin': 'https://www.lagou.com',
        'referer': 'https://www.lagou.com/jobs/list_python?labelWords=&fromSearch=true&suginput=',
        'sec-ch-ua': '"Not;A Brand";v="99", "Google Chrome";v="91", "Chromium";v="91"',
        'sec-ch-ua-mobile': '?0',
        'sec-fetch-dest': 'empty',
        'sec-fetch-mode': 'cors',
        'sec-fetch-site': 'same-origin',
        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
        'x-anit-forge-code': '0',
        'x-anit-forge-token': None,
        'x-requested-with': 'XMLHttpRequest'
    }
    # 定义post方式参数
    for num in range(1, 4):
        fromdata = {
            'first': 'true',
            'pn': num,
            'kd': keyword
        }
    # 向服务器发送请求
        response = requests.post(url, headers=h, data=fromdata)
        # 下载数据
        joinhtml = response.text
        # print(type(joinhtml))
        # 解析数据
        dictdata = json.loads(joinhtml)
        # print(type(dictdata))
        ct = dictdata['content']['positionResult']['result']
        positonlist = []
        for i in range(0, dictdata['content']['pageSize']):
            positionName = ct[i]['positionName']
            companyFullName = ct[i]['companyFullName']
            city = ct[i]['city']
            district = ct[i]['district']
            companySize = ct[i]['companySize']
            education = ct[i]['education']
            salary = ct[i]['salary']
            salaryMonth = ct[i]['salaryMonth']
            workYear = ct[i]['workYear']
            datalist=[positionName,companyFullName,city,district,companySize,education,salary,salaryMonth,workYear]
            positonlist.append(datalist)
            print(datalist)
            # 建立链接
            conn = pymysql.Connect(host='localhost', port=3306, user='root', passwd='lmy3.1415926', db='lagou',charset='utf8')
            # sql
            sql="insert into lg values('%s','%s','%s','%s','%s','%s','%s','%s','%s');"%(positionName,companyFullName,city,district,companySize,education,salary,salaryMonth,workYear)
            # 创建游标并执行
            cursor =conn.cursor()
            try:
                cursor.execute(sql)
                conn.commit()
            except:
                conn.rollback()
            cursor.close()
            conn.close()


        # 设置时间延迟
        time.sleep(3)
        with open('拉勾网%s职位信息.csv'%keyword,'a',encoding="utf-8",newline="") as f:
            w=csv.writer(f)
            w.writerows(positonlist)
# 调用函数
title=['职位名称','公司名称','公司所在城市','所属地区','公司人数','学历要求','薪资范围','薪资月','作年薪']
with open('拉勾网%s职位信息.csv'%keyword,'a',encoding="utf-8",newline="") as f:
    w=csv.writer(f)
    w.writerow(title)
getHrml('https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false')

四、疫情数据采集

import requests,json,csv,pymysql

def getHrml(url):
    h={
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        }

    response = requests.get(url, headers=h)
    joinhtml = response.text
    directro=joinhtml.split('(')[1]
    directro2=directro[0:-2]
    dictdata = json.loads(directro2)
    ct = dictdata['country']
    positonlist = []
    for i in range(0, 196):
        provinceName=ct[i]['provinceName']
        cured=ct[i]['cured']
        diagnosed=ct[i]['diagnosed']
        died=ct[i]['died']
        diffDiagnosed=ct[i]['diffDiagnosed']

        datalist=[provinceName,cured,diagnosed,died,diffDiagnosed]
        positonlist.append(datalist)
        print(diagnosed)
        conn = pymysql.Connect(host='localhost', port=3306, user='root', passwd='lmy3.1415926', db='lagou', charset='utf8')
        sql = "insert into yq values('%s','%s','%s','%s','%s');" %(provinceName,cured,diagnosed,died,diffDiagnosed)
        cursor = conn.cursor()
        try:
            cursor.execute(sql)
            conn.commit()
        except: 
            conn.rollback()
        cursor.close()
        conn.close()
    with open('疫情数据.csv','a',encoding="utf-8",newline="") as f:
        w=csv.writer(f)
        w.writerows(positonlist)
title=['provinceName','cured','diagnosed','died','diffDiagnosed']
with open('疫情数据.csv','a',encoding="utf-8",newline="") as f:
    w = csv.writer(f)
    w.writerow(title)
getHrml('https://m.look.360.cn/events/feiyan?sv=&version=&market=&device=2&net=4&stype=&scene=&sub_scene=&refer_scene=&refer_subscene=&f=jsonp&location=true&sort=2&_=1626165806369&callback=jsonp2')

五、scrapy 数据采集

(一)创建爬虫步骤

1.创建项目,在命令行输入:scrapy startproject 项目名称

2.创建爬虫文件:在命令行定位到spiders文件夹下:scrapy genspider 爬虫文件名 网站域名

3.运行程序:scrapy crawl 爬虫文件名

(二)scrapy文件结构

1.spiders文件夹:编写解析程序

2.init.py:包标志文件,只有存在这个python文件的文件夹才是包

3.items.py:定义数据结构,用于定义爬取的字段

4.middlewares.py:中间件

5.pipliness.py:管道文件,用于定义数据存储方向

6.settings.py:配置文件,通常配置用户代理,管道文件开启。

(三)scrapy爬虫框架使用流程

1.配置settings.py文件:

(1)User-Agent:“浏览器参数”

(2)ROBOTS协议:Fasle

(3)修改ITEM_PIPLINES:打开管道

2.在item.py中定义爬取的字段

字段名 = scrapy.Field()

3.在spiders文件夹中的parse()方法中写解析代码并将解析结果提交给item对象

4.在piplines.py中定义存储路径

5.分页采集:

1)查找url的规律

2)在爬虫文件中先定义页面变量,使用if判断和字符串格式化方法生成新url

3)yield scrapy Requests(url,callback=parse)

案例

(一)安居客数据采集

其中的文件

1.ajk.py中

python 采集图片 python采集数据代码_python_07

import scrapy

from anjuke.items import AnjukeItem
class AjkSpider(scrapy.Spider):
    name = 'ajk'
    #allowed_domains = ['bj.fang.anjuke.com/?from=navigation']
    start_urls = ['https://bj.fang.anjuke.com/loupan/all/p1/']
    pagenum = 1
    def parse(self, response):
        #print(response.text)
        #response.encoding = 'gb2312'
        item = AnjukeItem()
        # 解析程序
        name = response.xpath('//span[@class="items-name"]/text()').extract()
        temp = response.xpath('//span[@class="list-map"]/text()').extract()
        place = []
        district = []
        #print(temp)
        for i in temp:
            placetemp = "".join(i.split("]")[0].strip("[").strip().split())
            districttemp = i.split("]")[1].strip()
            #print(districttemp)
            place.append(placetemp)
            district.append(districttemp)
        #apartment = response.xpath('//a[@class="huxing"]/span[not(@class)]/text()').extract()
        area1 = response.xpath('//span[@class="building-area"]/text()').extract()
        area = []
        for j in area1:
            areatemp = j.strip("建筑面积:").strip('㎡')
            area.append(areatemp)
        price = response.xpath('//p[@class="price"]/span/text()').extract()
        # print(name)
        # 将处理后的数据传入item中
        item['name'] = name
        item['place'] = place
        item['district'] = district
        #item['apartment'] = apartment
        item['area'] = area
        item['price'] = price
        yield item
        # print(type(item['name']))
        for a,b,c,d,e in zip(item['name'],item['place'],item['district'],item['area'],item['price']):
             print(a,b,c,d,e)
        # 分页爬虫
        if self.pagenum < 5:
            self.pagenum += 1
            newurl = "https://bj.fang.anjuke.com/loupan/all/p{}".format(str(self.pagenum))
            #print(newurl)
            yield scrapy.Request(newurl, callback=self.parse)
        # print(type(dict(item)))

2.pipelines.py中

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html


# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
import csv,pymysql
# 存放到csv中
class AnjukePipeline:
    def open_spider(self,spider):
        self.f = open("安居客北京.csv", "w", encoding='utf-8', newline="")
        self.w = csv.writer(self.f)
        titlelist = ['name', 'place', 'distract', 'area', 'price']
        self.w.writerow(titlelist)
    def process_item(self, item, spider):
        # writerow()  [1,2,3,4] writerows()  [[第一条记录],[第二条记录],[第三条记录]]
        # 数据处理
        k = list(dict(item).values())
        self.listtemp = []
        for a,b,c,d,e in zip(k[0],k[1],k[2],k[3],k[4]):
            self.temp = [a,b,c,d,e]
            self.listtemp.append(self.temp)
        #print(listtemp)
        self.w.writerows(self.listtemp)
        return item
    def close_spider(self,spider):
        self.f.close()
# 存储到mysql中
class MySqlPipeline:
    def open_spider(self,spider):
        self.conn = pymysql.Connect(host="localhost",port=3306,user='root',password='lmy3.1415926',db="anjuke",charset='utf8')
    def process_item(self,item,spider):
        self.cursor = self.conn.cursor()
        for a, b, c, d, e in zip(item['name'], item['place'], item['district'], item['area'], item['price']):
            sql = 'insert into ajk values("%s","%s","%s","%s","%s");'%(a,b,c,d,e)

            self.cursor.execute(sql)
            self.conn.commit()
        return item
    def close_spider(self,spider):
        self.cursor.close()
        self.conn.close()

3.items.py中

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


class AnjukeItem(scrapy.Item):
    # define the fields for your item here like:
    name = scrapy.Field()
    place = scrapy.Field()
    district = scrapy.Field()
    #apartment = scrapy.Field()
    area = scrapy.Field()
    price = scrapy.Field()

4.settings.py中

# Scrapy settings for anjuke project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'anjuke'

SPIDER_MODULES = ['anjuke.spiders']
NEWSPIDER_MODULE = 'anjuke.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla / 5.0(Windows NT 10.0;WOW64)'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'anjuke.middlewares.AnjukeSpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'anjuke.middlewares.AnjukeDownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'anjuke.pipelines.AnjukePipeline': 300,
   'anjuke.pipelines.MySqlPipeline': 301
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

5.middlewares.py中

# Define here the models for your spider middleware
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html

from scrapy import signals

# useful for handling different item types with a single interface
from itemadapter import is_item, ItemAdapter


class AnjukeSpiderMiddleware:
    # Not all methods need to be defined. If a method is not defined,
    # scrapy acts as if the spider middleware does not modify the
    # passed objects.

    @classmethod
    def from_crawler(cls, crawler):
        # This method is used by Scrapy to create your spiders.
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
        return s

    def process_spider_input(self, response, spider):
        # Called for each response that goes through the spider
        # middleware and into the spider.

        # Should return None or raise an exception.
        return None

    def process_spider_output(self, response, result, spider):
        # Called with the results returned from the Spider, after
        # it has processed the response.

        # Must return an iterable of Request, or item objects.
        for i in result:
            yield i

    def process_spider_exception(self, response, exception, spider):
        # Called when a spider or process_spider_input() method
        # (from other spider middleware) raises an exception.

        # Should return either None or an iterable of Request or item objects.
        pass

    def process_start_requests(self, start_requests, spider):
        # Called with the start requests of the spider, and works
        # similarly to the process_spider_output() method, except
        # that it doesn’t have a response associated.

        # Must return only requests (not items).
        for r in start_requests:
            yield r

    def spider_opened(self, spider):
        spider.logger.info('Spider opened: %s' % spider.name)


class AnjukeDownloaderMiddleware:
    # Not all methods need to be defined. If a method is not defined,
    # scrapy acts as if the downloader middleware does not modify the
    # passed objects.

    @classmethod
    def from_crawler(cls, crawler):
        # This method is used by Scrapy to create your spiders.
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
        return s

    def process_request(self, request, spider):
        # Called for each request that goes through the downloader
        # middleware.

        # Must either:
        # - return None: continue processing this request
        # - or return a Response object
        # - or return a Request object
        # - or raise IgnoreRequest: process_exception() methods of
        #   installed downloader middleware will be called
        return None

    def process_response(self, request, response, spider):
        # Called with the response returned from the downloader.

        # Must either;
        # - return a Response object
        # - return a Request object
        # - or raise IgnoreRequest
        return response

    def process_exception(self, request, exception, spider):
        # Called when a download handler or a process_request()
        # (from other downloader middleware) raises an exception.

        # Must either:
        # - return None: continue processing this exception
        # - return a Response object: stops process_exception() chain
        # - return a Request object: stops process_exception() chain
        pass

    def spider_opened(self, spider):
        spider.logger.info('Spider opened: %s' % spider.name)

(二)太平洋汽车数据采集

1.tpy.py中

import scrapy

from taipy.items import TaipyItem


class TpySpider(scrapy.Spider):
    name = 'tpy'
    # allowed_domains = ['price.pcauto.com.cn/top/k0-p1.html']
    start_urls = ['https://price.pcauto.com.cn/top/k0-p1.html']
    pagenum = 1
    def parse(self, response):
        item = TaipyItem()
        # response.encoding ='gb2312'
        # print(response.text)
        name = response.xpath('//p[@class="sname"]/a/text()').extract()
        temperature = response.xpath('//p[@class="col rank"]/span[@class="fl red rd-mark"]/text()').extract()
        price = response.xpath('//p/em[@class="red"]/text()').extract()
        brand2 = response.xpath('//p[@class="col col1"]/text()').extract()
        brand = []
        for j in brand2:
            areatemp = j.strip('品牌:').strip('排量:').strip('\r\n')
            brand.append(areatemp)
        brand = [i for i in brand if i != '']
        rank2 = response.xpath('//p[@class="col"]/text()').extract()
        rank = []
        for j in rank2:
            areatemp = j.strip('级别:').strip('变速箱:').strip('\r\n')
            rank.append(areatemp)
        rank = [i for i in rank if i != '']

        item['name'] = name
        item['temperature'] = temperature
        item['price'] = price
        item['brand'] = brand
        item['rank'] = rank
        yield item

        for a, b, c, d, e in zip(item['name'], item['temperature'], item['price'], item['brand'], item['rank']):
            print(a, b, c, d, e)
        if self.pagenum < 6:
            self.pagenum += 1
            newurl = "https://price.pcauto.com.cn/top/k0-p{}.html".format(str(self.pagenum))
            print(newurl)
            yield scrapy.Request(newurl, callback=self.parse)
        #print(type(dict(item)))

2.pipelines.py中

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html


# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
import csv,pymysql

class TaipyPipeline:
    def open_spider(self, spider):
        self.f=open("太平洋.csv", "w", encoding='utf-8', newline="")
        self.w = csv.writer(self.f)
        titlelist=['name','temperature','price','brand','rank']
        self.w.writerow(titlelist)

    def process_item(self, item, spider):
        k = list(dict(item).values())
        self.listtemp = []
        for a, b, c, d, e in zip(k[0], k[1], k[2], k[3], k[4]):
            self.temp = [a, b, c, d, e]
            self.listtemp.append(self.temp)
        print(self.listtemp)
        self.w.writerows(self.listtemp)
        return item
    def close_spider(self, spider):
        self.f.close()
class MySqlPipeline:
    def open_spider(self,spider):
        self.conn = pymysql.Connect(host="localhost",port=3306,user='root',password='lmy3.1415926',db="taipy",charset='utf8')
    def process_item(self,item,spider):
        self.cursor = self.conn.cursor()
        for a, b, c, d, e in zip(item['name'], item['temperature'], item['price'], item['brand'], item['rank']):
            sql = 'insert into tpy values("%s","%s","%s","%s","%s");'%(a,b,c,d,e)

            self.cursor.execute(sql)
            self.conn.commit()
        return item
    def close_spider(self,spider):
        self.cursor.close()
        self.conn.close()

3.items.py中

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


class TaipyItem(scrapy.Item):
    # define the fields for your item here like:
    name = scrapy.Field()
    temperature = scrapy.Field()
    price = scrapy.Field()
    brand = scrapy.Field()
    rank = scrapy.Field()

4.settings.py中

# Scrapy settings for taipy project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'taipy'

SPIDER_MODULES = ['taipy.spiders']
NEWSPIDER_MODULE = 'taipy.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'taipy.middlewares.TaipySpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'taipy.middlewares.TaipyDownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
# EXTENSIONS = {
#     # 'taipy.pipelines.TaipyItem':300
# }

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
    'taipy.pipelines.TaipyPipeline': 300,
    'taipy.pipelines.MySqlPipeline':301
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

5.middlewares.py中

# Define here the models for your spider middleware
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html

from scrapy import signals

# useful for handling different item types with a single interface
from itemadapter import is_item, ItemAdapter


class TaipySpiderMiddleware:
    # Not all methods need to be defined. If a method is not defined,
    # scrapy acts as if the spider middleware does not modify the
    # passed objects.

    @classmethod
    def from_crawler(cls, crawler):
        # This method is used by Scrapy to create your spiders.
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
        return s

    def process_spider_input(self, response, spider):
        # Called for each response that goes through the spider
        # middleware and into the spider.

        # Should return None or raise an exception.
        return None

    def process_spider_output(self, response, result, spider):
        # Called with the results returned from the Spider, after
        # it has processed the response.

        # Must return an iterable of Request, or item objects.
        for i in result:
            yield i

    def process_spider_exception(self, response, exception, spider):
        # Called when a spider or process_spider_input() method
        # (from other spider middleware) raises an exception.

        # Should return either None or an iterable of Request or item objects.
        pass

    def process_start_requests(self, start_requests, spider):
        # Called with the start requests of the spider, and works
        # similarly to the process_spider_output() method, except
        # that it doesn’t have a response associated.

        # Must return only requests (not items).
        for r in start_requests:
            yield r

    def spider_opened(self, spider):
        spider.logger.info('Spider opened: %s' % spider.name)


class TaipyDownloaderMiddleware:
    # Not all methods need to be defined. If a method is not defined,
    # scrapy acts as if the downloader middleware does not modify the
    # passed objects.

    @classmethod
    def from_crawler(cls, crawler):
        # This method is used by Scrapy to create your spiders.
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
        return s

    def process_request(self, request, spider):
        # Called for each request that goes through the downloader
        # middleware.

        # Must either:
        # - return None: continue processing this request
        # - or return a Response object
        # - or return a Request object
        # - or raise IgnoreRequest: process_exception() methods of
        #   installed downloader middleware will be called
        return None

    def process_response(self, request, response, spider):
        # Called with the response returned from the downloader.

        # Must either;
        # - return a Response object
        # - return a Request object
        # - or raise IgnoreRequest
        return response

    def process_exception(self, request, exception, spider):
        # Called when a download handler or a process_request()
        # (from other downloader middleware) raises an exception.

        # Must either:
        # - return None: continue processing this exception
        # - return a Response object: stops process_exception() chain
        # - return a Request object: stops process_exception() chain
        pass

    def spider_opened(self, spider):
        spider.logger.info('Spider opened: %s' % spider.name)