领域规则模式:在特定领域中,某些变化虽然频繁,但可以抽象为某种规则。这时候,结合特定的领域,将问题抽象为语法规则,从而给出该领域下的一般性解决方案。
典型模式:解释器模式(Interpreter)。
解释器模式
1.动机
在软件构建过程中,如果某一特定领域内的问题比较复杂,类似的结构不断重复出现,如果使用普通的编程方式来实现将面临非常频繁的变化。
2.作用
将特定领域问题表达为某种语法规则下的句子,然后构建一个解释器来解释这样的句子。
3.定义
给定一个语言,定义它的文法的一种表示,并定义一种解释器,这个解释器使用该表示来解释语言中的句子。
4.代码
//运用解释器模式后代码
class Expression {
public:
virtual int interpreter(map<char, int> var)=0;
virtual ~Expression(){}
};
//变量表达式
class VarExpression: public Expression {
char key;
public:
VarExpression(const char& key)
{
this->key = key;
}
int interpreter(map<char, int> var) override {
return var[key];
}
};
//符号表达式
class SymbolExpression : public Expression {
// 运算符左右两个参数
protected:
Expression* left;
Expression* right;
public:
SymbolExpression( Expression* left, Expression* right):
left(left),right(right){
}
};
//加法运算
class AddExpression : public SymbolExpression {
public:
AddExpression(Expression* left, Expression* right):
SymbolExpression(left,right){
}
int interpreter(map<char, int> var) override {
return left->interpreter(var) + right->interpreter(var);
}
};
//减法运算
class SubExpression : public SymbolExpression {
public:
SubExpression(Expression* left, Expression* right):
SymbolExpression(left,right){
}
int interpreter(map<char, int> var) override {
return left->interpreter(var) - right->interpreter(var);
}
};
Expression* analyse(string expStr) {
stack<Expression*> expStack;
Expression* left = nullptr;
Expression* right = nullptr;
for(int i=0; i<expStr.size(); i++)
{
switch(expStr[i])
{
case '+':
// 加法运算
left = expStack.top();
right = new VarExpression(expStr[++i]);
expStack.push(new AddExpression(left, right));
break;
case '-':
// 减法运算
left = expStack.top();
right = new VarExpression(expStr[++i]);
expStack.push(new SubExpression(left, right));
break;
default:
// 变量表达式
expStack.push(new VarExpression(expStr[i]));
}
}
Expression* expression = expStack.top();
return expression;
}
void release(Expression* expression){
//释放表达式树的节点内存...
}
int main(int argc, const char * argv[]) {
string expStr = "a+b-c+d-e";
map<char, int> var;
var.insert(make_pair('a',5));
var.insert(make_pair('b',2));
var.insert(make_pair('c',1));
var.insert(make_pair('d',6));
var.insert(make_pair('e',10));
Expression* expression= analyse(expStr);
int result=expression->interpreter(var);
cout<<result<<endl;
release(expression);
return 0;
}
pState->Operation1();
pState = pState->pNext;
//...
}
void Operation2(){
//...
pState->Operation2();
pState = pState->pNext;
//...
}
void Operation3(){
//...
pState->Operation3();
pState = pState->pNext;
//...
}
};
5.结构
其中,
1.AbstractExpression(抽象表达式 如):声明一个抽象的解释操作,这个接口为抽象语法树中所有的节点所共享;
2.TerminalExpression(终结符表达式 如):实现与文法中的终结符相关联的解释操作;一个句子中的每个终结符需要该类的一个实例。
3.NonterminalExpression(非终结符表达式):对文法中的每一条规则R::=R1R2…R3都需要一个NonterminalExpression类;为从R1到Rn的每个符号都维护一个AbstractExpression类型的实例变量;为文法中的非终结符实现解释操作,解释一般要递归调用表示R1到Rn的那些对象的解释操作。
4.Context(上下文):包含解释器之外的一些全局信息。
5.Client(客户):构建表示该文法定义的语言中一个特定的句子的抽象语法树。该抽象语法树由TerminalExpression和NonterminalExpression的实例装配而成。
6.总结
1.Interpret模式的应用场合是Interpret模式应用中的难点,只有满足“业务规则频繁变化,且类似的结构不断重复出现,并且容易抽象为语法规则的问题”,才适合使用Interpret模式。
2.使用Interpret模式来表示文法规则,从而可以使用面向对象技巧来方便的扩展文法。
3.Interpret模式比较适合简单的文法表示,对于复杂的文法表示,Interpret模式会产生比较大的类层次结构,需要求助于语法分析器这样的标准工具。