分析线程池中的keepAliveTime参数具体实现

参数意义

创建线程池时,有一个重要参数就是keepAliveTime,标记线程空闲多久后被释放。

那么他到底是怎么实现的呢?

猜想

有一个线程在维护时间,可笑。专门有一个线程去维护,浪费资源,而且时间也不够精确。而且还要开辟空间记录线程开始空闲的时间,消耗空间。

源码分析

java.util.concurrent.ThreadPoolExecutor#getTask

/**
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait, and if the queue is
     *    non-empty, this worker is not the last thread in the pool.
     *
     * @return task, or null if the worker must exit, in which case
     *         workerCount is decremented
     */
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            // 当前线程数
            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                // 这一步是关键,需要了解poll和take的区别,take会进行阻塞。
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }
  • poll 方法作用是移除并返回队列的头节点。但是如果当队列里面是空的,没有任何东西可以移除的时候,便会返回 null 作为提示。
  • 带时间参数的 poll 方法:如果能够移除,便会立刻返回这个节点的内容;如果队列是空的就会进行等待,等待时间正是我们指定的时间,直到超时时间到了,如果队列里依然没有元素可供移除,便会返回 null 作为提示。
  • take 方法的作用是获取并移除队列的头结点。通常在队列里有数据的时候会正常取出数据并删除;但是如果执行 take 的时候队列里无数据,则阻塞,直到队列里有数据;一旦队列里有数据了,就会立刻解除阻塞状态,并且取到数据。
  • timed为true则标志着:允许核心线程超时被释放或者当前线程数超过核心线程数。一旦为tue,就会去使用阻塞对垒的poll方法,如果keepAliveTime的时间里获取不到任务,就会返回Null,在上一级,也就是runWorker方法中去释放资源。

java.util.concurrent.ThreadPoolExecutor#runWorker

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            // while循环获取任务,如果获取不到,就跳出循环,在finally中进行释放。
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            // 去释放当前的worker w。
            processWorkerExit(w, completedAbruptly);
        }
    }

阻塞队列的poll方法又是怎么实现超时的呢?

但是我们较真来看,打破砂锅问到底,阻塞队列又是如何做到去完成超时的呢?

java.util.concurrent.DelayQueue为例

源码分析

java.util.concurrent.DelayQueue#poll(long, java.util.concurrent.TimeUnit)

/**
     * Retrieves and removes the head of this queue, waiting if necessary
     * until an element with an expired delay is available on this queue,
     * or the specified wait time expires.
     *
     * @return the head of this queue, or {@code null} if the
     *         specified waiting time elapses before an element with
     *         an expired delay becomes available
     * @throws InterruptedException {@inheritDoc}
     */
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            for (;;) {
                E first = q.peek();
                if (first == null) {
                    if (nanos <= 0)
                        // 已经超时就返回null
                        return null;
                    else
                        // 未超时就去await
                        nanos = available.awaitNanos(nanos);
                } else {
                    long delay = first.getDelay(NANOSECONDS);
                    if (delay <= 0)
                        return q.poll();
                    if (nanos <= 0)
                        return null;
                    first = null; // don't retain ref while waiting
                    if (nanos < delay || leader != null)
                        // 未超时就去await
                        nanos = available.awaitNanos(nanos);
                    else {
                        Thread thisThread = Thread.currentThread();
                        leader = thisThread;
                        try {
                            // 未超时就去await
                            long timeLeft = available.awaitNanos(delay);
                            nanos -= delay - timeLeft;
                        } finally {
                            if (leader == thisThread)
                                leader = null;
                        }
                    }
                }
            }
        } finally {
            if (leader == null && q.peek() != null)
                available.signal();
            lock.unlock();
        }
    }

可以看到反复调用了available.awaitNanos(delay)方法,继续往下看

java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject#awaitNanos

/**
         * Implements timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>
         */
        public final long awaitNanos(long nanosTimeout)
                throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    // 这一步去做了等待
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return deadline - System.nanoTime();
        }

看到执行了LockSupport.parkNanos(this, nanosTimeout);

java.util.concurrent.locks.LockSupport#parkNanos(java.lang.Object, long)

public static void parkNanos(Object blocker, long nanos) {
        if (nanos > 0) {
            Thread t = Thread.currentThread();
            setBlocker(t, blocker);
            UNSAFE.park(false, nanos);
            setBlocker(t, null);
        }
    }

执行了UNSAFE.park(false, nanos);

sun.misc.Unsafe#park

public native void park(boolean var1, long var2);

这是一个native方法,一般来说到了native我就不看了…c++都还给夫子了。

网上搜搜看吧!!

转载分析本地方法的博客:https://www.jianshu.com/p/37ef66eddca6

也不是特别详细,没有到操作系统底层。

个人猜测操作系统是包了一层while循环,在未超时时就放弃这个CPU时间片,让出CPU,等待下次调度再做判断。

总结

不算太虎头蛇尾吧,至少把jdk中是怎么做到实现keepAliveTime参数的源码给看懂了。

欢迎大家交流指出JRE中阻塞队列调用的UNSAFE如何做到超时,以及对应到操作系统如何配合这个超时指令。