一. 整体架构
总结为如下图:
Dataframe本质是 数据 + 数据的描述信息(结构元信息)
所有的上述SQL及dataframe操作最终都通过Catalyst翻译成spark程序RDD操作代码
sparkSQL前身是shark,大量依赖Hive项目的jar包与功能,但在上面的扩展越来越难,因此出现了SparkSQL,它重写了分析器,执行器 脱离了对Hive项目的大部分依赖,基本可以独立去运行,只用到两个地方:
1.借用了hive的词汇分析的jar即HiveQL解析器
2.借用了hive的metastore和数据访问API即hiveCatalog
也就是说上图的左半部分的操作全部用的是sparkSQL本身自带的内置SQL解析器解析SQL进行翻译,用到内置元数据信息(比如结构化文件中自带的结构元信息,RDD的schema中的结构元信息)
右半部分则是走的Hive的HQL解析器,还有Hive元数据信息
因此左右两边的API调用的底层类会有不同
SQLContext使用:
简单的解析器(scala语言写的sql解析器)【比如:1.在半结构化的文件里面使用sql查询时,是用这个解析器解析的,2.访问(半)结构化文件的时候,通过sqlContext使用schema,类生成Dataframe,然后dataframe注册为表时,registAsTmpTable 然后从这个表里面进行查询时,即使用的简单的解析器,一些hive语法应该是不支持的,有待验证)】
simpleCatalog【此对象中存放关系(表),比如我们指定的schema信息,类的信息,都是关系信息】
HiveContext使用:
HiveQL解析器【支持hive的hql语法,如只有通过HiveContext生成的dataframe才能调用saveAsTable操作】
hiveCatalog(存放数据库和表的元数据信息)
Sparksql的解析与Hiveql的解析的执行流程:
一个Sql语句转化为实际可执行的Spark的RDD模型需要经过以下几个步骤:
主要介绍下Spark-SQL里面的主要类成员:
1.2 SQLContext
SQL上下文环境,它保存了QueryExecution中所需要的几个类:
1.2.1 Catalog
一个存储<tableName,logicalPlan>的map结构,查找关系的目录,注册表,注销表,查询表和逻辑计划关系的类
1. @transient
2. protected[sql] lazy val catalog: Catalog = new SimpleCatalog(conf)
3. class SimpleCatalog(val conf: CatalystConf) extends Catalog {
4. new mutable.HashMap[String, LogicalPlan]()
5. override def registerTable(
6. tableIdentifier: Seq[String],
7. plan: LogicalPlan): Unit = {
8. //转化大小写
9. val tableIdent = processTableIdentifier(tableIdentifier)
10. tables += ((getDbTableName(tableIdent), plan))
11. }
12. override def unregisterTable(tableIdentifier: Seq[String]): Unit = {
13. val tableIdent = processTableIdentifier(tableIdentifier)
14. tables -= getDbTableName(tableIdent)
15. }
16. override def unregisterAllTables(): Unit = {
17. tables.clear()
18. }
19. override def tableExists(tableIdentifier: Seq[String]): Boolean = {
20. val tableIdent = processTableIdentifier(tableIdentifier)
21. tables.get(getDbTableName(tableIdent)) match {
22. case Some(_) => true
23. case None => false
24. }
25. }
26. override def lookupRelation(
27. tableIdentifier: Seq[String],
28. alias: Option[String] = None): LogicalPlan = {
29. val tableIdent = processTableIdentifier(tableIdentifier)
30. val tableFullName = getDbTableName(tableIdent)
31. // val tables = new mutable.HashMap[String, LogicalPlan](),根据表名获取logicalplan
32. "Table Not Found: $tableFullName"))
33. val tableWithQualifiers = Subquery(tableIdent.last, table)
34. // If an alias was specified by the lookup, wrap the plan in a subquery so that attributes are
35. // properly qualified with this alias.
36. alias.map(a => Subquery(a, tableWithQualifiers)).getOrElse(tableWithQualifiers)
37. }
38. override def getTables(databaseName: Option[String]): Seq[(String, Boolean)] = {
39. tables.map {
40. case (name, _) => (name, true)
41. }.toSeq
42. }
43. override def refreshTable(databaseName: String, tableName: String): Unit = {
44. throw new UnsupportedOperationException
45. }
46. }
1.2.2 SparkSQLParser
将Sql语句解析成语法树,返回一个Logical Plan。它首先拆分不同的SQL(将其分类),然后利用fallback解析。
1. /**
2. * The top level Spark SQL parser. This parser recognizes syntaxes that are available for all SQL
3. * dialects supported by Spark SQL, and delegates all the other syntaxes to the `fallback` parser.
4. *
5. * @param fallback A function that parses an input string to a logical plan
6. */
7. private[sql] class SparkSQLParser(fallback: String => LogicalPlan) extends AbstractSparkSQLParser {
8. protected val AS = Keyword("AS")
9. protected val CACHE = Keyword("CACHE")
10. protected val CLEAR = Keyword("CLEAR")
11. protected val IN = Keyword("IN")
12. protected val LAZY = Keyword("LAZY")
13. protected val SET = Keyword("SET")
14. protected val SHOW = Keyword("SHOW")
15. protected val TABLE = Keyword("TABLE")
16. protected val TABLES = Keyword("TABLES")
17. protected val UNCACHE = Keyword("UNCACHE")
18. override protected lazy val start: Parser[LogicalPlan] = cache | uncache | set | show | others
19. private lazy val cache: Parser[LogicalPlan] =
20. CACHE ~> LAZY.? ~ (TABLE ~> ident) ~ (AS ~> restInput).? ^^ {
21. case isLazy ~ tableName ~ plan =>
22. CacheTableCommand(tableName, plan.map(fallback), isLazy.isDefined)
23. }
24. private lazy val uncache: Parser[LogicalPlan] =
25. ( UNCACHE ~ TABLE ~> ident ^^ {
26. case tableName => UncacheTableCommand(tableName)
27. }
28. | CLEAR ~ CACHE ^^^ ClearCacheCommand
29. )
30. private lazy val set: Parser[LogicalPlan] =
31. SET ~> restInput ^^ {
32. case input => SetCommandParser(input)
33. }
34. private lazy val show: Parser[LogicalPlan] =
35. SHOW ~> TABLES ~ (IN ~> ident).? ^^ {
36. case _ ~ dbName => ShowTablesCommand(dbName)
37. }
38. private lazy val others: Parser[LogicalPlan] =
39. wholeInput ^^ {
40. case input => fallback(input)
41. }
42. }
1.2.3 Analyzer
语法分析器,Analyzer会使用Catalog和FunctionRegistry将UnresolvedAttribute和UnresolvedRelation转换为catalyst里全类型的对象。例如将
'UnresolvedRelation[test], None
转化为
Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42]org.apache.spark.sql.parquet.ParquetRelation2@2a400010
1. class Analyzer(
2. catalog: Catalog,
3. registry: FunctionRegistry,
4. conf: CatalystConf,
5. 100)
6. extends RuleExecutor[LogicalPlan] with HiveTypeCoercion with CheckAnalysis {
7. ……
8. }
1.2.4 Optimizer
优化器,将Logical Plan进一步进行优化
1. object DefaultOptimizer extends Optimizer {
2. val batches =
3. // SubQueries are only needed for analysis and can be removed before execution.
4. "Remove SubQueries", FixedPoint(100),
5. EliminateSubQueries) ::
6. "Operator Reordering", FixedPoint(100),
7. UnionPushdown,
8. CombineFilters,
9. PushPredicateThroughProject,
10. PushPredicateThroughJoin,
11. PushPredicateThroughGenerate,
12. ColumnPruning,
13. ProjectCollapsing,
14. CombineLimits) ::
15. "ConstantFolding", FixedPoint(100),
16. NullPropagation,
17. OptimizeIn,
18. ConstantFolding,
19. LikeSimplification,
20. BooleanSimplification,
21. SimplifyFilters,
22. SimplifyCasts,
23. SimplifyCaseConversionExpressions) ::
24. "Decimal Optimizations", FixedPoint(100),
25. DecimalAggregates) ::
26. "LocalRelation", FixedPoint(100),
27. ConvertToLocalRelation) :: Nil
28. }
例如:
CombineFilters:递归合并两个相邻的filter。例如:将
Filter(a>1)
Filter(b>1)
Project……
转化为
Filter(a>1) AND Filter(b>1)
Project……
CombineLimits:合并两个相邻的limit。例如:将select * from (select * from c_picrecord limit 100)a limit 10
优化为:
Limit if ((100 < 10)) 100 else 10
Relation[id#0L,dev_id#1,dev_chnnum#2L,de……
1.2.5 SparkPlanner
将LogicalPlan转化为SparkPlan
1. protected[sql] class SparkPlanner extends SparkStrategies {
2. val sparkContext: SparkContext = self.sparkContext
3. val sqlContext: SQLContext = self
4. def codegenEnabled: Boolean = self.conf.codegenEnabled
5. def unsafeEnabled: Boolean = self.conf.unsafeEnabled
6. def numPartitions: Int = self.conf.numShufflePartitions
7. def strategies: Seq[Strategy] =
8. experimental.extraStrategies ++ (
9. DataSourceStrategy ::
10. DDLStrategy ::
11. TakeOrdered ::
12. HashAggregation ::
13. LeftSemiJoin ::
14. HashJoin ::
15. InMemoryScans ::
16. ParquetOperations ::
17. BasicOperators ::
18. CartesianProduct ::
19. BroadcastNestedLoopJoin :: Nil)
20. }
比方说:
Subquery test
Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42]org.apache.spark.sql.parquet.ParquetRelation2@2a400010
通过DataSourceStrategy中的
[java] view plain copy
// Scanning non-partitioned HadoopFsRelation
case PhysicalOperation(projectList, filters, l @ LogicalRelation(t: HadoopFsRelation)) =>
将其转化为PhysicalRDD
1.2.6 PrepareForExecution
在SparkPlan中插入Shuffle的操作,如果前后2个SparkPlan的outputPartitioning不一样的话,则中间需要插入Shuffle的动作,比分说聚合函数,先局部聚合,然后全局聚合,局部聚合和全局聚合的分区规则是不一样的,中间需要进行一次Shuffle。
[java] view plain copy
/**
* Prepares a planned SparkPlan for execution by inserting shuffle operations as needed.
*/
@transient
protected[sql] val prepareForExecution = new RuleExecutor[SparkPlan] {
val batches =
Batch("Add exchange", Once, EnsureRequirements(self)) :: Nil
}
例如
GeneratedAggregate false,[Coalesce(SUM(PartialCount#44L),0) AS count#43L], false
GeneratedAggregatetrue, [COUNT(1) AS PartialCount#44L], false
PhysicalRDDMapPartitionsRDD[1]
经过PrepareForExecution,转化为
GeneratedAggregate false,[Coalesce(SUM(PartialCount#44L),0) AS count#43L], false
Exchange SinglePartition
GeneratedAggregate true, [COUNT(1) AS PartialCount#44L], false
PhysicalRDDMapPartitionsRDD[1]
1.3 QueryExecution
SQL语句执行环境
1. protected[sql] class QueryExecution(val logical: LogicalPlan) {//logical包含了Aggregate(groupingExprs, aggregates, df.logicalPlan)
2. def assertAnalyzed(): Unit = analyzer.checkAnalysis(analyzed)
3. lazy val analyzed: LogicalPlan = analyzer.execute(logical)
4. lazy val withCachedData: LogicalPlan = {
5. assertAnalyzed()
6. cacheManager.useCachedData(analyzed)
7. }
8. //优化过的LogicalPlan
9. // TODO: Don't just pick the first one...
10. lazy val sparkPlan: SparkPlan = {
11. SparkPlan.currentContext.set(self)
12. //SparkPlanner把LogicalPlan转化为SparkPlan
13. //1.4.1选取的是第一个strategies DataSourceStrategy
14. planner.plan(optimizedPlan).next()
15. }
16. lazy val executedPlan: SparkPlan = prepareForExecution.execute(sparkPlan)
17. lazy val toRdd: RDD[Row] = {
18. toString
19. executedPlan.execute()
20. }
21. protected def stringOrError[A](f: => A): String =
22. try f.toString catch { case e: Throwable => e.toString }
23. def simpleString: String =
24. """== Physical Plan ==
25. |${stringOrError(executedPlan)}
26. """.stripMargin.trim
27. //TODO:如何打印
28. override def toString: String = {
29. def output =
30. "${o.name}: ${o.dataType.simpleString}").mkString(", ")
31. // TODO previously will output RDD details by run (${stringOrError(toRdd.toDebugString)})
32. // however, the `toRdd` will cause the real execution, which is not what we want.
33. // We need to think about how to avoid the side effect.
34. """== Parsed Logical Plan ==
35. |${stringOrError(logical)}
36. |== Analyzed Logical Plan ==
37. |${stringOrError(output)}
38. |${stringOrError(analyzed)}
39. |== Optimized Logical Plan ==
40. |${stringOrError(optimizedPlan)}
41. |== Physical Plan ==
42. |${stringOrError(executedPlan)}
43. |Code Generation: ${stringOrError(executedPlan.codegenEnabled)}
44. |== RDD ==
45. """.stripMargin.trim
46. }
47. }
这里唯一需要注意的是analyzed,optimizedPlan,sparkPlan,executedPlan都为懒变量,也就是说只有真正要用到的时时候才会去执行相应的代码逻辑,没有用到的时候是不会发生任何事情的。
1.4 LogicalPlan and SparkPlan
LogicalPlan和SparkPlan都继承自QueryPlan,QueryPlan为泛型类
1. abstract class QueryPlan[PlanType <: TreeNode[PlanType]] extends TreeNode[PlanType] {
2. }
3. abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging {
4. }
5. abstract class SparkPlan extends QueryPlan[SparkPlan] with Logging with Serializable {
6. }
以上都为抽象类,然后在此基础上又根据不同的类型衍生出不同的树节点
1. /**
2. * A logical plan node with no children.叶子节点,没有子节点
3. */
4. abstract class LeafNode extends LogicalPlan with trees.LeafNode[LogicalPlan] {
5. self: Product =>
6. }
7. /**
8. * A logical plan node with single child. 一元节点
9. */
10. abstract class UnaryNode extends LogicalPlan with trees.UnaryNode[LogicalPlan] {
11. self: Product =>
12. }
13. /**
14. * A logical plan node with a left and right child 二元节点.
15. */
16. abstract class BinaryNode extends LogicalPlan with trees.BinaryNode[LogicalPlan] {
17. self: Product =>
18. }
1. //叶子节点,没有子节点
2. private[sql] trait LeafNode extends SparkPlan with trees.LeafNode[SparkPlan] {
3. self: Product =>
4. }
5. //一元节点
6. private[sql] trait UnaryNode extends SparkPlan with trees.UnaryNode[SparkPlan] {
7. self: Product =>
8. }
9. //二元节点
10. private[sql] trait BinaryNode extends SparkPlan with trees.BinaryNode[SparkPlan] {
11. self: Product =>
12. }
其各自真正的具体类为:
1. abstract class LeafNode extends LogicalPlan with trees.LeafNode[LogicalPlan] {
2. self: Product =>
3. }
1. abstract class UnaryNode extends LogicalPlan with trees.UnaryNode[LogicalPlan] {
2. self: Product =>
3. }
1. abstract class BinaryNode extends LogicalPlan with trees.BinaryNode[LogicalPlan] {
2. self: Product =>
3. }
1. private[sql] trait LeafNode extends SparkPlan with trees.LeafNode[SparkPlan] {
2. self: Product =>
3. }
1. private[sql] trait UnaryNode extends SparkPlan with trees.UnaryNode[SparkPlan] {
2. self: Product =>
3. }
1. private[sql] trait BinaryNode extends SparkPlan with trees.BinaryNode[SparkPlan] {
2. self: Product =>
3. }
可见Spark-Sql里面二叉树结构贯穿了整个解析过程。
二. Catalyst
所有的SQL操作最终都通过Catalyst翻译成spark程序代码
三. SparkSQL整体架构(前端+后端)
thriftserver作为一个前端,它其实只是主要分为两大块:
1.维护与用户的JDBC连接
2.通过HiveContext的API提交用户的HQL查询
正因为当初对未来做了太多的憧憬,所以对现在的自己尤其失望。生命中曾经有过的所有灿烂,终究都需要用寂寞来偿还。