一-----先来看一段代码

#include<stdio.h>
int main()
{
    double test=0.1;
    printf("%.100lf",test);
    return 0;
}

运行结果:

lua 浮点数计算精度丢失 浮点数精度缺失_其他

数据的截断导致的,这个结果是可以偏大也可以偏小的。

解释一下:首先要知道二进制转换为十进制的基本方法(除二取余法,乘五取余法等等),最好再了解一下浮点数的存储,这里的0.1就是一个典型的例子,对0.1乘五取余是乘不尽的,那么数据转化成的二进制序列的长度就会超出double的范围。那么多出的数据就会被截断。


二-----如何解决

如果你想的是彻底让屏幕显示出来的是0.1,那么,你不孤单,我一开始也是这样想的,但是这是不可能的。但是这个对我们的实际意义不大,毕竟有效的区段还是够的。

我在这里具体要解决的是两个问题

(1)浮点数的大小比较

#include<stdio.h>
int main()
{
    double test=0.1;
    if(test==(1-0.9))
    {
        printf("正常");
    }
    else
    {
        printf("what!!!");
    }
    return 0;
}

这段代码会输出“what!”。为什么上面已经说了0.1乘不尽,这里换成0.5是OK的,因为0.5D用二进制表示就是0.1B。每次都考虑乘不尽不烦吗?

解决方案

引入库函数<float.h>里定义的宏DBL_EPSILON。

lua 浮点数计算精度丢失 浮点数精度缺失_经验分享_02

 这里后面的一段英文是他是导致x+n!=x的最小值  (n代表EPSILON伊普西隆,x是任意值)

也就是说,任意一个比EPSILON小的值,你给一个数加上,都不会改变它的值。

那么,比EPSILON小的值引起的精度丢失都是在我们的允许范围内的

#include<stdio.h>
#include<float.h>
#include<math.h>
int main()
{
    double test = 0.1;
    if (fabs(test - (1 - 0.9)) < DBL_EPSILON)
    {
        printf("正常");
    }
    else
    {
        printf("what!!!");
    }
    return 0;
}

上图有两个点

1 。在<math.h>下的fabs(a)即取a的绝对值

想象一根数轴,他们相减的绝对值就是他们的距离

2 。 if(fabs(test-(1-0.9)<DBL_EPSILON))

等价于(test==1-0.9)(当然是对我们     人     而言)

test和(1-0.9)的距离若是小于DBL_EPSILON,那么精度的丢失是在可控范围内的,说明他们俩相等

(2)含浮点数的表达式和0.0的比较

要先把上面的搞明白。

之所以单独说这个问题,我是想强调一个数字与零作比较到底应该是a<DBL_EPSILON还是a<=DBL_EPSILON,加强一下理解

EPSILON是允许范围内的最小值(回到宏定义后面的解释),所以这个等于不可以加,加了说明上面的a如果等于EPSILION时,会导致数值的改变。




想要彻底解决精度丢失,是不可能的,也没必要,但我们有办法用近似来解决。

如果看完这篇文章你还是很迷糊,但我还是想说这是不能彻底解决的(我一开始也有这种想法),那么希望下次我准备出的数据的存取能对你有帮助。篇幅太长了,所以删删减减还是准备放到下次。

如果有错误,感谢指出。

最后感谢您的时间。