• 资源参数
# JobManager堆内存
jobmanager.heap.mb: 1024
# TaskManager堆内存
taskmanager.heap.mb: 2048
# 每个TaskManager上task slot数目
taskmanager.numberOfTaskSlots: 4
# 默认并行度
parallelism.default: 12

以上四项只是给出默认配置,实际执行作业时都可以用对应的命令行参数(-jm、-tm、-s、-p)修改。

  • 高可用配置
# 开启基于ZK的高可用
high-availability: zookeeper
# ZK集群(即所谓Quorum)地址
high-availability.zookeeper.quorum: ha1:2181,ha2:2181,ha3:2181
# Flink在ZK存储中的根节点
high-availability.zookeeper.path.root: /flink
# JobManager元数据的持久化位置,必须是可靠存储
high-availability.storageDir: hdfs://mycluster/flink/ha/
# 程序启动时的最大尝试次数
# 应当与YARN ApplicationMaster的最大尝试次数(yarn.resourcemanager.am.max-attempts)相同
yarn.application-attempts: 4

注意YARN ApplicationMaster的最大尝试次数(yarn.resourcemanager.am.max-attempts)默认值仅为2,使得作业容错率很低,因此预先把它修改为4,或者更大些。

  • StateBackend默认配置
# StateBackend类型
# 可选jobmanager(JM本身)/filesystem(外部文件系统)/rocksdb(自带的RocksDB数据库)
state.backend: filesystem
# 检查点目录
state.checkpoints.dir: hdfs://mycluster/flink-checkpoints
# 保存点目录(比检查点更重量级,一般手动操作,用于重启恢复)
state.savepoints.dir: hdfs://mycluster/flink-savepoints

选择filesystem或者rocksdb的话,可靠性比较高。对于轻量级的、逻辑不复杂的任务,可以选择jobmanager。程序中也能通过StreamExecutionEnvironment.setStateBackend()方法来指定。

  • 额外的JVM参数
env.java.opts: -server -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75 -XX:+UseCMSInitiatingOccupancyOnly -XX:+HeapDumpOnOutOfMemoryError

这个类似于spark-submit中的extraJavaOptions。

Flink on YARN有两种执行模式。

  • Session模式:通过yarn-session.sh创建一个持续运行的Flink Session,其中已经分配好了JobManager、TaskManager及所需资源,提交作业时,相当于提交给Session。
  • Single job模式:通过flink run脚本每次提交单个作业,设定JobManager为yarn-cluster,由YARN单独分配资源,类似于spark-submit的yarn-cluster部署模式。生产环境一般用这种模式,下面是示例脚本。
/opt/flink-1.5.1/bin/flink run \
# 分离模式运行 (-d)
--detached \