Resnet
设计起因是随着网络层增加反而梯度下降困难,甚至起到反作用,因此加入残差结构。
残差网络原理就是"正常梯度+消失梯度=正常梯度",只要自身的梯度是正常的,就算加上多层后出现的消失的梯度也是正常的值,这样能够保证梯度正常反向传播。
Resnet设计了两类残差块Basic_block和Bottleneck,分别用于不同层次的Resnet。完整代码
Basic_block
是两层的残差块,用于resnet18/34:
代码部分:
class BasicBlock(nn.Module):
"""
inplane是输入的通道数,plane是输出的通道数,expansion是对输出通道数的倍乘.
"""
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
"""
首先residual=x保存自身的值,然后x经过两个(conv+bn+relu)得到out,再将out+=residual.
"""
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
Bottleneck
三层的残差块,用于resnet50/101/152:
第一个1x1的卷积层用于降维,第二个3x3层用于处理,第三个1x1层用于升维,这样减少了计算量。
第一个1x1的卷积把256维channel降到64维,然后在最后通过1x1卷积恢复,整体上用的参数数目:1x1x256x64 +3x3x64x64 + 1x1x64x256 = 69632,而不使用bottleneck的话就是两个3x3x256的卷积,参数数目: 3x3x256x256x2 = 1179648,差了16.94倍。
class Bottleneck(nn.Module):
"""
区别:
使用了3次卷积对通道数进行压缩,再放大:
conv1卷积核是(1*1)[inplanes, planes]
conv2卷积核(3*3)[planes, planes]
conv3卷积核(1*1)[planes, planes * self.expansion] #expansion=4
注意:
Conv2d都将bias=False,因为卷积后都经过BN,归一化后在变换重构部分加的beta 就相当于+bias。
"""
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
ResNet网络
conv1+bn1+relu+maxpool
:(224,224,3)->(112,112,64)->(56,56,64)
其中conv1卷积核大小7*7,stride=2,p=3,通道从3->64。maxpool为2倍下采样。
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) #2倍下采样
- 然后构造
layer1-layer4
:
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
layers是叠加层数,如resnet50:[3, 4, 6, 3]
def resnet50(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
其中_make_layer
的构造:
# block:基础块的类型,是BasicBlock,还是Bottleneck
# planes:当前块的输入输入通道数
# blocks:块的数目
def _make_layer(self, block, planes, blocks, stride=1):
"""
downsample的作用:
拼接layers第一步是block(self.inplanes, planes, stride, downsample),其中不管经过Bottleneck
还是BasicBlock都会有这一步:
if self.downsample is not None:
residual = self.downsample(x)
然后有:
out += residual
out在Bottleneck中通道数是inplanes->planes * self.expansion,在BasicBlock是inplanes->planes.
所以downsample作用是保证out+=residual步骤,将输入的特征图和残差结构中卷积操作后的特征尺寸一致
才能相加.
self.inplanes->planes*block.expansion,其中BasicBlock.expansion=1,Bottleneck.expansion=4.
"""
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
#拼接blocks个layer
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
- 最后
平均池化+全连接
.
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
完整代码:我对参数初始化的意义不是很明白!for m in self.modules()和zero_init_residual部分
class ResNet(nn.Module):
#参数block指明残差块是两层或三层,参数layers指明每个卷积层需要的残差块数量,num_classes指明分类数,zero_init_residual是否初始化为0
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) #2倍下采样
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
#对模型卷积层参数以及BN层参数的初始化操作
for m in self.modules():
if isinstance(m, nn.Conv2d):
#kaiming高斯初始化,目的是使得Conv2d卷积层反向传播的输出的方差都为1
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
#初始化m.weight,即gamma的值为1;m.bias即beta的值为0
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# 在每个残差分支中初始化最后一个BN,即BatchNorm2d
# 以便残差分支以零开始,并且每个残差块的行为类似于一个恒等式。
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):#Bottleneck的最后一个BN是m.bn3
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):#BasicBlock的最后一个BN是m.bn2
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
不同层次网络实现
#18层的resnet
def resnet18(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
#34层的resnet
def resnet34(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
#50层的resnet
def resnet50(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
#101层的resnet
def resnet101(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
#152层的resnet
def resnet152(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
参考
https://www.jiqizhixin.com/articles/042201 https://zhuanlan.zhihu.com/p/77899090