大数据技术之Hive SQL题库-高级

第1题 同时在线人数问题

1.1 题目需求

现有各直播间的用户访问记录表(live_events)如下,表中每行数据表达的信息为,一个用户何时进入了一个直播间,又在何时离开了该直播间。

user_id

(用户id)

live_id

(直播间id)

in_datetime

(进入直播间的时间)

out_datetime

(离开直播间的时间)

100

1

2021-12-1 19:30:00

2021-12-1 19:53:00

100

2

2021-12-1 21:01:00

2021-12-1 22:00:00

101

1

2021-12-1 19:05:00

2021-12-1 20:55:00

现要求统计各直播间最大同时在线人数,期望结果如下:

live_id

max_user_count

1

4

2

3

3

2

1.2 数据准备

1)建表语句
drop table if exists live_events;
create table if not exists live_events
(
    user_id      int comment '用户id',
    live_id      int comment '直播id',
    in_datetime  string comment '进入直播间时间',
    out_datetime string comment '离开直播间时间'
)
    comment '直播间访问记录';
2)数据装载
INSERT overwrite table live_events
VALUES (100, 1, '2021-12-01 19:00:00', '2021-12-01 19:28:00'),
       (100, 1, '2021-12-01 19:30:00', '2021-12-01 19:53:00'),
       (100, 2, '2021-12-01 21:01:00', '2021-12-01 22:00:00'),
       (101, 1, '2021-12-01 19:05:00', '2021-12-01 20:55:00'),
       (101, 2, '2021-12-01 21:05:00', '2021-12-01 21:58:00'),
       (102, 1, '2021-12-01 19:10:00', '2021-12-01 19:25:00'),
       (102, 2, '2021-12-01 19:55:00', '2021-12-01 21:00:00'),
       (102, 3, '2021-12-01 21:05:00', '2021-12-01 22:05:00'),
       (104, 1, '2021-12-01 19:00:00', '2021-12-01 20:59:00'),
       (104, 2, '2021-12-01 21:57:00', '2021-12-01 22:56:00'),
       (105, 2, '2021-12-01 19:10:00', '2021-12-01 19:18:00'),
       (106, 3, '2021-12-01 19:01:00', '2021-12-01 21:10:00');
1.3 代码实现
select
    live_id,
    max(user_count) max_user_count
from
(
    select
        user_id,
        live_id,
        sum(user_change) over(partition by live_id order by event_time) user_count
    from
    (
        select user_id,
               live_id,
               in_datetime event_time,
               1 user_change
        from live_events
        union all
        select user_id,
               live_id,
               out_datetime,
               -1
        from live_events
    )t1
)t2
group by live_id;

2题 会话划分问题

2.1 题目需求

现有页面浏览记录表(page_view_events)如下,表中有每个用户的每次页面访问记录。

user_id

page_id

view_timestamp

100

home

1659950435

100

good_search

1659950446

100

good_list

1659950457

100

home

1659950541

100

good_detail

1659950552

100

cart

1659950563

101

home

1659950435

101

good_search

1659950446

101

good_list

1659950457

101

home

1659950541

101

good_detail

1659950552

101

cart

1659950563

102

home

1659950435

102

good_search

1659950446

102

good_list

1659950457

103

home

1659950541

103

good_detail

1659950552

103

cart

1659950563

规定若同一用户的相邻两次访问记录时间间隔小于60s,则认为两次浏览记录属于同一会话。现有如下需求,为属于同一会话的访问记录增加一个相同的会话id字段,期望结果如下:

user_id

page_id

view_timestamp

session_id

100

home

1659950435

100-1

100

good_search

1659950446

100-1

100

good_list

1659950457

100-1

100

home

1659950541

100-2

100

good_detail

1659950552

100-2

100

cart

1659950563

100-2

101

home

1659950435

101-1

101

good_search

1659950446

101-1

101

good_list

1659950457

101-1

101

home

1659950541

101-2

101

good_detail

1659950552

101-2

101

cart

1659950563

101-2

102

home

1659950435

102-1

102

good_search

1659950446

102-1

102

good_list

1659950457

102-1

103

home

1659950541

103-1

103

good_detail

1659950552

103-1

2.2 数据准备

1)建表语句
drop table if exists page_view_events;
create table if not exists page_view_events
(
    user_id        int comment '用户id',
    page_id        string comment '页面id',
    view_timestamp bigint comment '访问时间戳'
)
    comment '页面访问记录';2)数据装载
insert overwrite table page_view_events
values (100, 'home', 1659950435),
       (100, 'good_search', 1659950446),
       (100, 'good_list', 1659950457),
       (100, 'home', 1659950541),
       (100, 'good_detail', 1659950552),
       (100, 'cart', 1659950563),
       (101, 'home', 1659950435),
       (101, 'good_search', 1659950446),
       (101, 'good_list', 1659950457),
       (101, 'home', 1659950541),
       (101, 'good_detail', 1659950552),
       (101, 'cart', 1659950563),
       (102, 'home', 1659950435),
       (102, 'good_search', 1659950446),
       (102, 'good_list', 1659950457),
       (103, 'home', 1659950541),
       (103, 'good_detail', 1659950552),
       (103, 'cart', 1659950563);2.3 代码实现
select user_id,
       page_id,
       view_timestamp,
       concat(user_id, '-', sum(session_start_point) over (partition by user_id order by view_timestamp)) session_id
from (
         select user_id,
                page_id,
                view_timestamp,
                if(view_timestamp - lagts >= 60, 1, 0) session_start_point
         from (
                  select user_id,
                         page_id,
                         view_timestamp,
                         lag(view_timestamp, 1, 0) over (partition by user_id order by view_timestamp) lagts
                  from page_view_events
              ) t1
     ) t2;

3题 间断连续登录用户问题

3.1 题目需求

现有各用户的登录记录表(login_events)如下,表中每行数据表达的信息是一个用户何时登录了平台。

user_id

login_datetime

100

2021-12-01 19:00:00

100

2021-12-01 19:30:00

100

2021-12-02 21:01:00

现要求统计各用户最长的连续登录天数,间断一天也算作连续,例如:一个用户在1,3,5,6登录,则视为连续6天登录。期望结果如下:

user_id

max_day_count

100

3

101

6

102

3

104

3

105

1

3.2 数据准备

1)建表语句
drop table if exists login_events;
create table if not exists login_events
(
    user_id        int comment '用户id',
    login_datetime string comment '登录时间'
)
    comment '直播间访问记录';2)数据装载
INSERT overwrite table login_events
VALUES (100, '2021-12-01 19:00:00'),
       (100, '2021-12-01 19:30:00'),
       (100, '2021-12-02 21:01:00'),
       (100, '2021-12-03 11:01:00'),
       (101, '2021-12-01 19:05:00'),
       (101, '2021-12-01 21:05:00'),
       (101, '2021-12-03 21:05:00'),
       (101, '2021-12-05 15:05:00'),
       (101, '2021-12-06 19:05:00'),
       (102, '2021-12-01 19:55:00'),
       (102, '2021-12-01 21:05:00'),
       (102, '2021-12-02 21:57:00'),
       (102, '2021-12-03 19:10:00'),
       (104, '2021-12-04 21:57:00'),
       (104, '2021-12-02 22:57:00'),
       (105, '2021-12-01 10:01:00');3.3 代码实现
select
    user_id,
    max(recent_days) max_recent_days  --求出每个用户最大的连续天数
from
(
    select
        user_id,
        user_flag,
        datediff(max(login_date),min(login_date)) + 1 recent_days --按照分组求每个用户每次连续的天数(记得加1)
    from
    (
        select
            user_id,
            login_date,
            lag1_date,
            concat(user_id,'_',flag) user_flag --拼接用户和标签分组
        from
        (
            select
                user_id,
                login_date,
                lag1_date,
                sum(if(datediff(login_date,lag1_date)>2,1,0)) over(partition by user_id order by login_date) flag  --获取大于2的标签
            from
            (
                select
                    user_id,
                    login_date,
                    lag(login_date,1,'1970-01-01') over(partition by user_id order by login_date) lag1_date  --获取上一次登录日期
                from
                (
                    select
                        user_id,
                        date_format(login_datetime,'yyyy-MM-dd') login_date
                    from login_events
                    group by user_id,date_format(login_datetime,'yyyy-MM-dd')  --按照用户和日期去重
                )t1
            )t2
        )t3
    )t4
    group by user_id,user_flag
)t5
group by user_id;

4题 日期交叉问题

4.1 题目需求

现有各品牌优惠周期表(promotion_info)如下,其记录了每个品牌的每个优惠活动的周期,其中同一品牌的不同优惠活动的周期可能会有交叉。

promotion_id

brand

start_date

end_date

1

oppo

2021-06-05

2021-06-09

2

oppo

2021-06-11

2021-06-21

3

vivo

2021-06-05

2021-06-15

现要求统计每个品牌的优惠总天数,若某个品牌在同一天有多个优惠活动,则只按一天计算。期望结果如下:

brand

promotion_day_count

vivo

17

oppo

16

redmi

22

huawei

22

4.2 数据准备

1)建表语句
drop table if exists promotion_info;
create table promotion_info
(
    promotion_id string comment '优惠活动id',
    brand        string comment '优惠品牌',
    start_date   string comment '优惠活动开始日期',
    end_date     string comment '优惠活动结束日期'
) comment '各品牌活动周期表';
2)数据装载
insert overwrite table promotion_info
values (1, 'oppo', '2021-06-05', '2021-06-09'),
       (2, 'oppo', '2021-06-11', '2021-06-21'),
       (3, 'vivo', '2021-06-05', '2021-06-15'),
       (4, 'vivo', '2021-06-09', '2021-06-21'),
       (5, 'redmi', '2021-06-05', '2021-06-21'),
       (6, 'redmi', '2021-06-09', '2021-06-15'),
       (7, 'redmi', '2021-06-17', '2021-06-26'),
       (8, 'huawei', '2021-06-05', '2021-06-26'),
       (9, 'huawei', '2021-06-09', '2021-06-15'),
       (10, 'huawei', '2021-06-17', '2021-06-21');4.3 代码实现
select
    brand,
    sum(datediff(end_date,start_date)+1) promotion_day_count
from
(
    select
        brand,
        max_end_date,
        if(max_end_date is null or start_date>max_end_date,start_date,date_add(max_end_date,1)) start_date,
        end_date
    from
    (
        select
            brand,
            start_date,
            end_date,
            max(end_date) over(partition by brand order by start_date rows between unbounded preceding and 1 preceding) max_end_date
        from promotion_info
    )t1
)t2
where end_date>start_date
group by brand;