创建数据库


create database db_hive;
use db_hive;

create database if not exists db_hive_02;

create database if not exists db_hive_01 location '/user/rz_lee/warehouse/db_hive_01.db';   //指定数据库存储的位置



查看数据库



hive (db_hive)> show databases;

#模糊查询
hive (db_hive)> show databases like 'db_hive*';
OK
database_name
db_hive
db_hive_01
Time taken: 0.075 seconds, Fetched: 2 row(s)
hive (db_hive)>



 删除数据库



drop database myhive_db ; //这个database下面没有表可以用该命令
drop database if exists myhive_db cascade; //cedilla删除database



 

创建表



create table student(id int,name string) row format delimited fields terminated by '\t';



查看表结构



hive> desc student;
OK
id                      int                                         
name                    string                                      
Time taken: 0.114 seconds, Fetched: 2 row(s)



查看表详细信息



hive> desc extended student;
OK
id                      int                                         
name                    string                                      
                 
Detailed Table Information      Table(tableName:student, dbName:db_hive, owner:root, createTime:1508215977, lastAccessTime:0, retention:0,
sd:StorageDescriptor(cols:[FieldSchema(name:id, type:int, comment:null), FieldSchema(name:name, type:string, comment:null)], location:hdfs:
//ns1/user/hive/warehouse/db_hive.db/student, inputFormat:org.apache.hadoop.mapred.TextInputFormat, outputFormat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat, compressed:false, numBuckets:-1, serdeInfo:SerDeInfo(name:null, serializationLib:org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, parameters:{serialization.format=       , field.delim=
Time taken: 0.356 seconds, Fetched: 4 row(s)
hive>



将表的详细信息格式化一下,开发中常用



hive> desc formatted student;
OK
# col_name              data_type               comment             
                 
id                      int                                         
name                    string                                      
                 
# Detailed Table Information             
Database:               db_hive                  
Owner:                  root                     
CreateTime:             Tue Oct 17 12:52:57 CST 2017     
LastAccessTime:         UNKNOWN                  
Retention:              0                        
Location:               hdfs://ns1/user/hive/warehouse/db_hive.db/student        
Table Type:             MANAGED_TABLE            
Table Parameters:                
        COLUMN_STATS_ACCURATE   {\"BASIC_STATS\":\"true\"}
        numFiles                0                   
        numRows                 0                   
        rawDataSize             0                   
        totalSize               0                   
        transient_lastDdlTime   1508215977          
                 
# Storage Information            
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe       
InputFormat:            org.apache.hadoop.mapred.TextInputFormat         
OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat       
Compressed:             No                       
Num Buckets:            -1                       
Bucket Columns:         []                       
Sort Columns:           []                       
Storage Desc Params:             
        field.delim             \t                  
        serialization.format    \t                  
Time taken: 0.065 seconds, Fetched: 32 row(s)
hive>



加载本地数据到表中



hive> load data local inpath '/root/student.txt' into table db_hive.student;    //防止当使用时忘记use databse的时候,出现报错,在表的前面加上数据库名
Loading data to table db_hive.student
OK
Time taken: 1.632 seconds
hive> select * from student;
OK
1001    gailun
1002    jeckes
1003    anny
1004    yi
Time taken: 1.376 seconds, Fetched: 4 row(s)
hive>



修改hive表字段信息(字段名/字段类型)



ALTER TABLE table_name CHANGE COLUMN col_old_name col_new_name column_type # 需要同时将三个参数写上,hive检查后面两个参数,有更新的就去alter



将hive内部表转为外部表



ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='TRUE');



改变外部表的location路径



alter table table_namel set location 'hdfs://nameservice1/user/new_path'



查看hive表的创建信息



show create table



查看hive中的函数



hive> show functions;
OK
!
!=
$sum0
%
&
*
+
-
/
<
<=
<=>
<>
=
==
>
>=
^
abs
acos
add_months
aes_decrypt
aes_encrypt
and
array
array_contains
ascii
asin
assert_true
atan
avg
base64
between
bin
bround
case
cbrt
ceil
ceiling
chr
coalesce
collect_list
collect_set
compute_stats
concat
concat_ws
context_ngrams
conv
corr
cos
count
covar_pop
covar_samp
crc32
create_union
cume_dist
current_database
current_date
current_timestamp
current_user
date_add
date_format
date_sub
datediff
day
dayofmonth
decode
degrees
dense_rank
div
e
elt
encode
ewah_bitmap
ewah_bitmap_and
ewah_bitmap_empty
ewah_bitmap_or
exp
explode
factorial
field
find_in_set
first_value
floor
format_number
from_unixtime
from_utc_timestamp
get_json_object
get_splits
greatest
hash
hex
histogram_numeric
hour
if
in
in_file
index
initcap
inline
instr
isnotnull
isnull
java_method
json_tuple
lag
last_day
last_value
lcase
lead
least
length
levenshtein
like
ln
locate
log
log10
log2
lower
lpad
ltrim
map
map_keys
map_values
mask
mask_first_n
mask_hash
mask_last_n
mask_show_first_n
mask_show_last_n
matchpath
max
md5
min
minute
month
months_between
named_struct
negative
next_day
ngrams
noop
noopstreaming
noopwithmap
noopwithmapstreaming
not
ntile
nvl
or
parse_url
parse_url_tuple
percent_rank
percentile
percentile_approx
pi
pmod
posexplode
positive
pow
power
printf
quarter
radians
rand
rank
reflect
reflect2
regexp
regexp_extract
regexp_replace
repeat
replace
reverse
rlike
round
row_number
rpad
rtrim
second
sentences
sha
sha1
sha2
shiftleft
shiftright
shiftrightunsigned
sign
sin
size
sort_array
soundex
space
split
sqrt
stack
std
stddev
stddev_pop
stddev_samp
str_to_map
struct
substr
substring
substring_index
sum
tan
to_date
to_unix_timestamp
to_utc_timestamp
translate
trim
trunc
ucase
unbase64
unhex
unix_timestamp
upper
var_pop
var_samp
variance
version
weekofyear
when
windowingtablefunction
xpath
xpath_boolean
xpath_double
xpath_float
xpath_int
xpath_long
xpath_number
xpath_short
xpath_string
year
|
~
Time taken: 0.012 seconds, Fetched: 237 row(s)
hive>



查看函数怎么使用



hive> desc function upper;
OK
upper(str) - Returns str with all characters changed to uppercase
Time taken: 0.017 seconds, Fetched: 1 row(s)
hive>



查看带案例函数使用



hive> desc function extended upper ;
OK
upper(str) - Returns str with all characters changed to uppercase
Synonyms: ucase
Example:
  > SELECT upper('Facebook') FROM src LIMIT 1;
  'FACEBOOK'
Time taken: 0.011 seconds, Fetched: 5 row(s)
hive>



往配置文件添加属性以在hive中显示数据库名和位置



<property>
    <name>hive.cli.print.header</name>
    <value>true</value>
    <description>Whether to print the names of the columns in query output.</description>
</property>

<property>
    <name>hive.cli.print.current.db</name>
    <value>true</value>
    <description>Whether to include the current database in the Hive prompt.</description>
</property>



结果



hive (default)> use db_hive;
OK
Time taken: 0.897 seconds
hive (db_hive)> select * from student;
OK
student.id      student.name
1001    gailun
1002    jeckes
1003    anny
1004    yi
Time taken: 1.744 seconds, Fetched: 4 row(s)
hive (db_hive)>



 Hive 常见属性配置

Hive 数据仓库位置配置

hive 就是在建立在 Hadoop 基础之上的数据仓库,数据就是存储在 HDFS 之上,默认(default)数据仓库位置为: /user/hive/warehouse

注意事项
  * 在仓库目录下,没有对默认的数据库default创建文件夹
  * 如果某张表属于default数据库,直接在数据仓库目录下创建一个文件夹

可以在下面属性中修改数据仓库的位置:

<property>
  <name>hive.metastore.warehouse.dir</name>
  <value>/user/hive/warehouse</value>
 </property>

同组用户的执行权限,看官网

Hive uses Hadoop, so:

  • you must have Hadoop in your path OR
  • export HADOOP_HOME=<hadoop-install-dir>

In addition, you must use below HDFS commands to create /tmp and /user/hive/warehouse (aka hive.metastore.warehouse.dir) and set them chmod g+w before you can create a table in Hive.

$ $HADOOP_HOME/bin/hadoop fs -mkdir /tmp $ $HADOOP_HOME/bin/hadoop fs -mkdir /user/hive/warehouse $ $HADOOP_HOME/bin/hadoop fs -chmod g+w /tmp $ $HADOOP_HOME/bin/hadoop fs -chmod g+w /user/hive/warehouse

Hive运行日志信息位置  

$HIVE_HOME/conf/hive-log4j.properties
  hive.log.dir=/opt/modules/hive-0.13.1/logs
  hive.log.file=hive.log

指定hive运行时显示的log日志的级别 

$HIVE_HOME/conf/hive-log4j.properties
  hive.root.logger=INFO,DRFA

在cli命令行上显示当前数据库,以及查询表的行头信息 

$HIVE_HOME/conf/hive-site.xml
  <property>
   <name>hive.cli.print.header</name>
   <value>true</value>
   <description>Whether to print the names of the columns in query output.</description>
  </property>

  <property>
   <name>hive.cli.print.current.db</name>
   <value>true</value>
   <description>Whether to include the current database in the Hive prompt.</description>
  </property>

在启动hive时设置配置属性信息

 $ bin/hive --hiveconf <property=value>

查看当前所有的配置信息

 hive > set ;

 hive (db_hive)> set system:user.name ;
  system:user.name=beifeng
 hive (db_hive)> set system:user.name=beifeng ;

 此种方式,设置属性的值,仅仅在当前会话session生效

查看历史操作命令

$home/.hivehistory

Hive中"一次使用"命令

用户可能有时期望执行一个或者多个查询(使用分号隔开),执行结束后hive CLI立即退出.hive提供了这样的功能,因为CLI可以接受 -e 命令这样的形式.如果表 student 具有一个字符串字段和一个整形字段 ,我们可以看到如下输出:

[root@srv01 ~]#hive -e "select * from db_hive.student limit 3";
OK
student.id      student.name
1001    gailun
1002    jeckes
1003    anny
Time taken: 7.964 seconds, Fetched: 3 row(s)
[root@srv01 ~]#

从文件中执行Hive查询

Hive中可以使用 -f 文件名方式执行指定文件中的一个或者多个查询语句按照惯例,一般把这些Hive 查询文件保存为具有 .q 或者 .hql 后缀名的文件.工作中常用的sql脚本

[root@srv01 ~]# vim hivef.sql

select * from db_hive.student limit 3

[root@srv01 ~]# hive -f hivef.sql > /root/hivef_result.txt

[root@srv01 ~]# cat hivef_result.txt 
student.id      student.name
1001    gailun
1002    jeckes
1003    anny
[root@srv01 ~]#

[root@srv01 ~]# hive -f hivef.sql
Logging initialized using configuration in file:/usr/hive/conf/hive-log4j2.properties Async: true
OK
student.id      student.name
1001    gailun
1002    jeckes
1003    anny
Time taken: 2.972 seconds, Fetched: 3 row(s)

 执行shell命令

用户不需要退出 hive CLI 就可以执行简单的 bash shell 命令.只要在命令的前面加上! 并且以分号(;) 结尾就可以:

hive (db_hive)> !cat /root/student.txt
              > ;
1001    gailun
1002    jeckes
1003    anny
1004    yi
hive (db_hive)>

hive CLI中不能使用需要用户进行输入的交互式命令,而且不支持 shell 的"管道" 功能的文件的自动补全功能.例如,  !ls *.sql ;

在Hive内使用Hadoop的dfs命令

用户可以在Hive CLI 中执行Hadoop的dfs...命令,只需要将hadoop 命令中的关键字hadoop 去掉,然后以分号结尾就可以了:

hive (db_hive)> dfs -ls /user;
Found 1 items
drwxr-xr-x   - root supergroup          0 2017-10-17 12:44 /user/hive
hive (db_hive)>

这种使用hadoop命令的方式实际上比与其等价的在bash shell 中执行的hadoop dfs ...命令更加高效.因为后者每次都会启动一个新的JVM实例,而 Hive 会在同一个进程中挂靠这些命令.

用户可以通过如下命令查看 dfs 所提供的所有功能选项列表 :

hive (db_hive)> dfs -help;

Hive日期数据类型

类型

支持版本

TIMESTAMP

Note: Only available starting with Hive 0.8.0

DATE

Note: Only available starting with Hive 0.12.0

INTERVAL

Note: Only available starting with Hive 1.2.0

Dates 
DATE值描述特定的年/月/日,格式为YYYY-MM-DD。 例如,DATE’2013-01-01’。 日期类型没有时间组件。 Date类型支持的值范围是0000-01-01到9999-12-31,这取决于Java Date类型的原始支持。 
Date types只能在Date, Timestamp, or String types之间转换。

 

转换类型

结果

cast(date as date)

Same date value

cast(date as string)

The year/month/day represented by the Date is formatted as a string in the form ‘YYYY-MM-DD’.

cast(date as timestamp)

A timestamp value is generated corresponding to midnight of the year/month/day of the date value, based on the local timezone.

cast(string as date)

If the string is in the form ‘YYYY-MM-DD’, then a date value corresponding to that year/month/day is returned. If the string value does not match this formate, then NULL is returned.

cast(timestamp as date)

The year/month/day of the timestamp is determined, based on the local timezone, and returned as a date value.

hive查看版本号

hive> hive.hwi.war.file

Beeline

hive的使用界面非常不友好,在hive2我们可以使用beeline来操作hive。

连接到hive

bin/beeline   -u jdbc:hive2://srv01:1000 -n root

删除表:

drop table tableName;

删除表的效果是:

  hive会从元数据库中清除关于这个表的信息;

  hive会从hdfs中删除这个表的表目录