': ['1', '2', '3']}
# 3. 业务逻辑
nums = (int(num) for num in arguments[''])
if arguments['--sum']:
result = sum(nums)
else:
result = max(nums)
print(result) # 基于上文的 ['--sum', '1', '2', '3'] 参数,处理函数为 sum 函数,其结果为 6
从上述示例可以看到,我们通过 __doc__ 定义了接口描述,这和 argparse 中 add_argument 是等价的,然后 docopt 便会根据这个元信息把命令行参数转换为一个字典。业务逻辑中就需要对这个字典进行处理。
对比与 argparse:
对于更为复杂的命令程序,元信息的定义上 docopt 会更加简单
然而在业务逻辑的处理上,由于 argparse 在一些简单参数的处理上会更加便捷(比如示例中的情形),相对来说 docopt 转换为字典后就把所有处理交给业务逻辑的方式会更加复杂
2.3、click
命令行程序本质上是定义参数和处理参数,而处理参数的逻辑一定是与所定义的参数有关联的。那可不可以用函数和装饰器来实现处理参数逻辑与定义参数的关联呢?而 click 正好就是以这种使用方式来设计的。
click 使用装饰器的好处就在于用装饰器优雅的语法将参数定义和处理逻辑整合在一起,从而暗示了路由关系。相比于 argparse 和 docopt 需要自行对解析后的参数来做路由关系,简单了不少。
以下示例为 click 实现的 计算器程序:
import sys
import click
sys.argv = ['calculator.py', '--sum', '1', '2', '3']
# 2. 定义参数
@click.command()
@click.argument('nums', nargs=-1, type=int)
@click.option('--sum', 'use_sum', is_flag=True, help='sum the nums (default: find the max)')
# 1. 业务逻辑
def calculator(nums, use_sum):
"""Calculator Program."""
print(nums, use_sum) # 输出:(1, 2, 3) True
if use_sum:
result = sum(nums)
else:
result = max(nums)
print(result) # 基于上文的 ['--sum', '1', '2', '3'] 参数,处理函数为 sum 函数,其结果为 6
calculator()
从上述示例可以看出,参数和对应的处理逻辑非常好地绑定在了一起,看上去就很直观,使得我们可以明确了解参数会怎么处理,这在有大量参数时显得尤为重要,这边是 click 相比于 argparse 和 docopt 最明显的优势。
此外,click 还内置了很多实用工具和额外能力,比如说 Bash 补全、颜色、分页支持、进度条等诸多实用功能,可谓是如虎添翼。
2.4、fire
fire 则是用一种面向广义对象的方式来玩转命令行,这种对象可以是类、函数、字典、列表等,它更加灵活,也更加简单。你都不需要定义参数类型,fire 会根据输入和参数默认值来自动判断,这无疑进一步简化了实现过程。
以下示例为 fire 实现的 计算器程序:
import sys
import fire
sys.argv = ['calculator.py', '1', '2', '3', '--sum']
builtin_sum = sum
# 1. 业务逻辑
# sum=False,暗示它是一个选项参数 --sum,不提供的时候为 False
# *nums 暗示它是一个能提供任意数量的位置参数
def calculator(sum=False, *nums):
"""Calculator Program."""
print(sum, nums) # 输出:True (1, 2, 3)
if sum:
result = builtin_sum(nums)
else:
result = max(nums)
print(result) # 基于上文的 ['1', '2', '3', '--sum'] 参数,处理函数为 sum 函数,其结果为 6
fire.Fire(calculator)
从上述示例可以看出,fire 提供的方式无疑是最简单、并且最 Pythonic 的了。我们只需关注业务逻辑,而命令行参数的定义则和函数参数的定义融为了一体。
不过,有利自然也有弊,比如 nums 并没有说是什么类型,也就意味着输入字符串'abc'也是合法的,这就意味着一个严格的命令行程序必须在自己的业务逻辑中来对期望的类型进行约束。
三、横向对比
最后,我们横向对比下argparse、docopt、click 和 fire 库的各项功能和特点:
Python 的命令行库种类繁多、各具特色。结合上面的总结,可以选择出符合使用场景的库,如果几个库都符合,那么就根据你更偏爱的风格来选择。这些库都很优秀,其背后的思想很是值得我们学习和扩展