配置、使用transformers包

一、transformers

transformers包又名pytorch-transformers或者pytorch-pretrained-bert。它提供了一些列的STOA模型的实现,包括(Bert、XLNet、RoBERTa等)。下面介绍该包的使用方法:

1、如何安装

transformers的安装十分简单,通过pip命令即可

pip install transformers

也可通过其他方式来安装,具体可以参考:https://github.com/huggingface/transformers

2、如何使用

使用transformers前需要下载好pytorch(版本>=1.0)或者tensorflow2.0。下面以pytorch为例,来演示使用方法

1、若要导入所有包可以输入:

import torch
from transformers import *

2、若要导入指定的包可以输入:

import torch
from transformers import BertModel

3、加载预训练权重和词表

UNCASED = './bert-base-uncased'
bert = BertModel.from_pretrained(UNCASED)

注意:加载预训练权重时需要下载好预训练的权重文件,一般来说,当缓存文件中没有所需文件时(第一次使用),只要网络没有问题,就会自动下载。当网络出现问题的时候,就需要手动下载预训练权重了。

当缓存中不存在所需文件时,一般会出现提示:
bert-base-uncased-pytorch_model.bin not found in cache

二、手动下载、本地加载预训练权重

在使用transformers的时候,由于Bert、XLNet的文件都在AWS上存储,transformers的默认下载地址指向的是AWS,因此在国内下载速度非常慢。需要我们自己手动下载。

1、下载.txt、.json、.bin文件到本地

以Bert为例,相关的.bin文件(预训练权重)下载地址如下所示:

BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
    'bert-base-german-dbmdz-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin",
    'bert-base-german-dbmdz-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin",
}

若需要下载.json文件,则下载地址为:

BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
    'bert-base-german-dbmdz-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-config.json",
    'bert-base-german-dbmdz-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-config.json",
}

.txt相关文件(词表文件)下载地址如下:

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
        'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
        'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
        'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
        'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
        'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
        'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
        'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt",
        'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt",
        'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt",
        'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
        'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
        'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
        'bert-base-german-dbmdz-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt",
        'bert-base-german-dbmdz-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-vocab.txt",
    }
}

本地使用预训练的权重文件

假设我们下载好了如下三个文件:

transformer pytorch代码讲解 pytorch transformer包_权重


首先我们建立一个文件夹,命名为bert-base-uncased,然后将这个三个文件放入这个文件夹,并且对文件进行重命名,重命名时将bert-base-uncased-去除即可。

假设我们训练文件夹名字为 train.py,我们需要将上面的bert-base-uncased文件夹放到与train.py同级的目录下面。
若不改名以及调整文件夹位置将会出现:
vocab.txt not found;pytorch_model.bin not found;Model name 'xxx/pytorch_model.bin ' was not found in model name list等错误。

之后使用下面的代码进行测试即可:

UNCASED = './bert-base-uncased'
VOCAB = 'vocab.txt'
tokenizer=BertTokenizer.from_pretrained(os.path.join(UNCASED,VOCAB))
bert = BertModel.from_pretrained(UNCASED)