1、spark是什么?
Spark是基于内存计算的大数据并行计算框架。
1.1 Spark基于内存计算
相比于MapReduce基于IO计算,提高了在大数据环境下数据处理的实时性。
1.2 高容错性和高可伸缩性
与mapreduce框架相同,允许用户将Spark部署在大量廉价硬件之上,形成集群。
2、spark编程
每一个spark应用程序都包含一个驱动程序(driver program ),他会运行用户的main函数,并在集群上执行各种并行操作(parallel operations)
spark提供的最主要的抽象概念有两种:
弹性分布式数据集(resilient distributed dataset)简称RDD ,他是一个元素集合,被分区地分布到集群的不同节点上,可以被并行操作,RDDS可以从hdfs(或者任意其他的支持Hadoop的文件系统)上的一个文件开始创建,或者通过转换驱动程序中已经存在的Scala集合得到,用户也可以让spark将一个RDD持久化到内存中,使其能再并行操作中被有效地重复使用,最后RDD能自动从节点故障中恢复
spark的第二个抽象概念是共享变量(shared variables),它可以在并行操作中使用,在默认情况下,当spark将一个函数以任务集的形式在不同的节点上并行运行时,会将该函数所使用的每个变量拷贝传递给每一个任务中,有时候,一个变量需要在任务之间,或者驱动程序之间进行共享,spark支持两种共享变量:
广播变量(broadcast variables),它可以在所有节点的内存中缓存一个值。
累加器(accumulators):只能用于做加法的变量,例如计算器或求和器
3、spark-sql
spark-sql是将hive sql跑在spark引擎上的一种方式,提供了基于schema处理数据的方式。
4、代码详解
java spark和spark-sql依赖。
pom.xml
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
基于spark1.6创建HiveContext客户端。在spark2.1已经开始使用sparksession了。请注意。
package com.xiaoju.dqa.fireman.driver;
import com.xiaoju.dqa.fireman.exception.SparkInitException;
import com.xiaoju.dqa.fireman.utils.PropertiesUtil;
import org.apache.spark.SparkConf;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.hive.HiveContext;
import java.io.IOException;
import java.util.Properties;
public class SparkClient {
private SparkConf sparkConf;
private JavaSparkContext javaSparkContext;
public SparkClient() {
initSparkConf();
javaSparkContext = new JavaSparkContext(sparkConf);
}
public SQLContext getSQLContext() throws SparkInitException {
return new SQLContext(javaSparkContext);
}
public HiveContext getHiveContext() throws SparkInitException {
return new HiveContext(javaSparkContext);
}
private void initSparkConf() {
try {
PropertiesUtil propUtil = new PropertiesUtil("fireman.properties");
Properties prop = propUtil.getProperties();
String warehouseLocation = System.getProperty("user.dir");
sparkConf = new SparkConf()
.setAppName(prop.getProperty("spark.appname"))
.set("spark.sql.warehouse.dir", warehouseLocation)
.setMaster(prop.getProperty("spark.master"));
} catch (IOException ex) {
ex.printStackTrace();
}
}
}
驱动程序driver
1、这里要实现可序列化接口,否则spark并不会识别这个类。
2、这里在通过spark-sql读取到row数据之后,将schema解析出来,并且映射为hashmap。
public class FiremanDriver implements Serializable {
private String db;
private String table;
private HiveContext hiveContext;public FiremanDriver(String db, String table) {
try {
this.db = db;
this.table = table;
SparkClient sparkClient = new SparkClient();
hiveContext = sparkClient.getHiveContext();
} catch (SparkInitException ex) {
ex.printStackTrace();
}
}
public void check() {
HashMap<String, Object> result = null;
try {
String query = String.format("select * from %s.%s", db ,table);
System.out.println(query);
DataFrame rows = hiveContext.sql(query);
JavaRDD<Row> rdd = rows.toJavaRDD();
result = rdd.map(new Function<Row, HashMap<String, Object>>() {
@Override
public HashMap<String, Object> call(Row row) throws Exception {
HashMap<String, Object> fuseResult = new HashMap<String, Object>();
HashMap<String, Object> rowMap = formatRowMap(row);
// 实际map过程
return mapResult;
}
}).reduce(new Function2<HashMap<String, Object>, HashMap<String, Object>, HashMap<String, Object>>() {
@Override
public HashMap<String, Object> call(HashMap<String, Object> map1, HashMap<String, Object> map2) throws Exception {
// reduce merge过程
return mergeResult;
}
});
} catch (Exception ex) {
ex.printStackTrace();
}
}
// 读取shema,这里在通过spark-sql读取到row数据之后,将schema解析出来,并且映射为hashmap
private HashMap<String, Object> formatRowMap(Row row){
HashMap<String, Object> rowMap = new HashMap<String, Object>();
try {
for (int i=0; i<row.schema().fields().length; i++) {
String colName = row.schema().fields()[i].name();
Object colValue = row.get(i);
rowMap.put(colName, colValue);
}catch (Exception ex) {
ex.printStackTrace();
}
return rowMap;
}
public static void main(String[] args) {
String db = args[0];
String table = args[1];
FiremanDriver firemanDriver = new FiremanDriver(db, table);
firemanDriver.check();
}
}