1、先查看服务器上的cuda版本
➜ ~ cat /usr/local/cuda/version.txt
CUDA Version 9.0.176
2、根据服务器的cuda版本去docker hub 拉镜像
nvidia/cuda:9.2-devel-ubuntu18.04
3、用镜像创建容器
docker run --name torch_gpu --runtime=nvidia -itd -v /usr/lib64:/usr/lib64 -v /media/mia/:/project/ -w /project/ nvidia/cuda:9.2-devel-ubuntu18.04 /bin/bash
4、在容器里测试
nvidia-smi
5、在容器里安装python3.7.3
apt-get update
apt-get upgrade
apt install build-essential -y
apt install libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev libffi-dev -y
apt install zlib1g-dev
apt install wget
apt install openssl
apt install curl
apt install libsqlite3-dev
wget https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tgz
tar -xvf Python-3.7.3.tgz
cd Python-3.7.3
./configure --enable-loadable-sqlite-extensions
make
make install
apt-get clean
rm -rf /var/lib/apt/lists/*
ln -s /usr/local/bin/pip3 /usr/bin/pip
ln -s /usr/local/bin/python3 /usr/bin/python
6.pip安装requirements.txt
pip install -r requirements.txt
如果下载慢或者超时,设置源
# 清华源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
参考 https://zhuanlan.zhihu.com/p/109939711
或者手动设置延时
pip --default-timeout=100 install numpy
7、查看torch-gpu版本是否安装成功
import torch
print(torch.cuda.is_available())
True代表GPU版本成功安装