1. Client
说明:Client是Elasticsearch所有API的主入口,主要方法有:
AdminClient admin() | 获取ES管理客户端 |
GetRequestBuilder prepareGet() | 准备一个GET请求 |
IndexRequestBuilder prepareIndex(String index, String type) | 准备一个新增文档的请求 |
DeleteRequestBuilder prepareDelete() | 准备一个删除文档的请求 |
BulkRequestBuilder prepareBulk() | 准备一个批量操作的请求 |
SearchRequestBuilder prepareSearch(String... indices) | 准备一个查询请求 |
UpdateRequestBuilder prepareUpdate() | 准备一个更新的请求(更新的本质是先查询索引替换更新的值后进行替换,所以反而比插入更耗性能) |
AdminClient
说明:对ES进行管理的客户端,主要方法有:
ClusterAdminClient cluster() | 产生一个允许从集群中执行action或操作的client |
IndicesAdminClient indices() | 产生一个允许从索引中执行action或操作的client |
IndicesAdminClient
说明:对ES的index进行管理的客户端,主要方法有:
IndicesExistsRequestBuilder prepareExists(String... indices) | 准备一个判断索引是否存在的请求 |
TypesExistsRequestBuilder prepareTypesExists(String... index) | 准备一个判断类型是否存在的请求 |
CreateIndexRequestBuilder prepareCreate(String index) | 准备一个创建索引的请求 |
DeleteIndexRequestBuilder prepareDelete(String... indices) | 准备一个删除索引的请求 |
AnalyzeRequestBuilder prepareAnalyze(@Nullable String index, String text) | 准备一个对字符串进行分词的请求 |
PutIndexTemplateRequestBuilder preparePutTemplate(String name) | 准备一个设置模板的请求 |
DeleteIndexTemplateRequestBuilder prepareDeleteTemplate(String name) | 准备一个删除模板的请求 |
UpdateSettingsRequestBuilder prepareUpdateSettings(String... indices) | 准备一个更新设置的请求,如更新副本数量等 |
PutMappingRequestBuilder preparePutMapping(String... indices) | 准备一个新建映射关系的请求 |
QueryBuilders
说明:为prepareSearch组装查询参数,如:
Java代码
- client.prepareSearch(esIndex).setTypes(esType).setQuery(QueryBuilders.matchQuery("global_ana_ch", "杭州西湖")).setFrom(0).setSize(1).get();
matchAllQuery() | 构造匹配所有文档的查询 |
matchQuery(String name, Object text) | 构造查询一个被分析器分析过的字段的查询(match查询) |
matchPhraseQuery(String name, Object text) | 它和matchQuery的区别是它不会对传入的参数(text)进行分词,而是以其做为一个完整的词进行查询(类似百度查询时加引号的功能)如“有限公司”会分词成“有限”和“公司”,根据分词规则,“有限企业”、“大公司”这样的数据也会被查询出来,使用此方法后则必须包含“有限公司”才会被查询出 |
matchPhrasePrefixQuery(String name, Object text) | 中文查询时matchPhraseQuery和matchPhrasePrefixQuery并没有什么区别,英文查询时matchPhrasePrefixQuery会以短语形式查询,查询时关键字不会被分词,而是直接以一个字符串的形式查询 |
commonTermsQuery(String name, Object text) | 对query进行重写,区分低频词和高频词,并根据Elasticsearch传递的highFreqOccur和lowFreqOccur将高频词和低频词构造成BooleanQuery它的好处是减少了对高频词(如and)查询的性能影响,增加的查询效率 |
termQuery(String name, Object value) | 多字段查询 |
termsQuery(String name, Object... values) | 和termQuery类似,多个term组合 |
fuzzyQuery(String name, Object value) | 模糊查询(like) |
prefixQuery(String name, String prefix) | 前缀匹配查询 |
rangeQuery(String name) | 范围区间查询 |
wildcardQuery(String name, String query) | 使用通配符查询(*,?) |
regexpQuery(String name, String regexp) | 正则查询org.apache.lucene.util.automaton.RegExp |
queryStringQuery(String queryString) | 字符串查询 |
boolQuery() | 布尔型判断的查询must::多个查询条件的完全匹配,相当于 andmustNot::多个查询条件的相反匹配,相当于 notshould::至少有一个查询条件匹配, 相当于 or |
SpanQuery | SpanQuery是按照词在文章中的距离或者查询几个相邻词的查询。 |
spanFirstQuery | 接受另一个跨度查询的匹配必须出现在第N的位置 |
spanNearQuery | 接受多个跨度查询的匹配必须在指定的距离,并可能在相同的顺序 |
spanNotQuery | 包装另一个跨度查询,排除了任何文档匹配查询 |
spanOrQuery | 结合多个跨度查询,返回文档的匹配任何指定的查询 |
spanWithinQuery | 和spanContainingQuery类似 |
spanContainingQuery | 这个查询内部会有多个子查询,但是会设定某个子查询优先级更高,作用更大,通过关键字little和big来指定 |
spanMultiTermQueryBuilder | 包装了 term, range, prefix, wildcard, regexp,或 fuzzy查询 |
spanTermQuery | 和spanQuery类似,同时可以做为spanQuery的子句 |
初始化elasticsearch客户端
Settings settings = Settings.builder()
.put("cluster.name", "my-application")// 集群名称yml配置
.put("client.transport.ping_timeout", "60s")// 超时时间
.put("client.transport.sniff", false)//是否开启自动发现,非局域网关闭
.put("client.transport.ignore_cluster_name", false).build();
try {
client = new PreBuiltTransportClient(settings).addTransportAddress(new TransportAddress(InetAddress.getByName(ip), 9300));
} catch (UnknownHostException e) {
e.printStackTrace();
}
elasticsearch常使用的用法
package com.xue;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import org.apache.commons.io.FileUtils;
import org.elasticsearch.action.admin.indices.exists.indices.IndicesExistsResponse;
import org.elasticsearch.action.admin.indices.mapping.get.GetMappingsResponse;
import org.elasticsearch.action.admin.indices.mapping.put.PutMappingRequestBuilder;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.search.SearchRequestBuilder;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.Client;
import org.elasticsearch.client.IndicesAdminClient;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.MatchQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.bucket.terms.StringTerms;
import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder;
import org.elasticsearch.search.sort.SortOrder;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;
import java.io.File;
import java.io.IOException;
import java.util.Map;
/**
* Created by xuehan on 2018/12/10.
*/
/**1. index的操作*/
public class ElSearch {
private Client client = null;
@Before
public void init(){
ESTest esTest = new ESTest();
client = esTest.getClient();
}
/**2. mapping映射操作*/
@Test
public void testCreateIndex() {
IndicesAdminClient indices = client.admin().indices();
String esIndex = "myindex";
// 判断inedx是否存在
IndicesExistsResponse indicesExistsResponse = indices.prepareExists(esIndex).get();
if (indicesExistsResponse.isExists()) {
// 存在时先删除index
indices.prepareDelete(esIndex).get();
}
// 创建前校验(index不存在)
indicesExistsResponse = indices.prepareExists(esIndex).get();
Assert.assertFalse(indicesExistsResponse.isExists());
// 开始创建index
indices.prepareCreate(esIndex).get();
// 创建后校验(index存在)
indicesExistsResponse = indices.prepareExists(esIndex).get();
Assert.assertTrue(indicesExistsResponse.isExists());
}
@Test
public void testMapping() throws IOException {
String esIndex = "testMapping";
IndicesAdminClient indices = client.admin().indices();
// 判断inedx是否存在
IndicesExistsResponse indicesExistsResponse = indices.prepareExists(esIndex).get();
if (indicesExistsResponse.isExists()) {
// 存在时先删除index
indices.prepareDelete(esIndex).get();
}
// 创建新的index
indices.prepareCreate(esIndex).get();
// 执行前判断(mapping不存在)
String esType = "esType";
GetMappingsResponse getMappingsResponse = indices.prepareGetMappings(esIndex).setTypes(esType).get();
Assert.assertTrue(getMappingsResponse.mappings().isEmpty());
// 执行mapping
PutMappingRequestBuilder builder = indices.preparePutMapping(esIndex).setType(esType);
String mappingFile = getClass().getResource("/").getPath() + "search/lg_line_mapping.json";
String mappingSource = FileUtils.readFileToString(new File(mappingFile));
builder.setSource(mappingSource).get();
// 执行后判断(mapping存在)
getMappingsResponse = indices.prepareGetMappings(esIndex).setTypes(esType).get();
Assert.assertFalse(getMappingsResponse.mappings().isEmpty());
}
@Test
public void testIndexing() {
String esType = "esType";
String esIndex = "myindex";
// 不管有没有,先删除数据
client.prepareDelete(esIndex, esType, "1").execute();
// 执行前判断(数据不存在)
GetResponse response = client.prepareGet(esIndex, esType, "1").get();
Assert.assertNull(response.getSourceAsString());
// 插入数据
LineIndexingVO lineIndexingVO = new LineIndexingVO();
lineIndexingVO.setId(1L);
lineIndexingVO.setLineNo("LM2017041913250001");
lineIndexingVO.setGlobal_ana_ch("浙江,杭州,冬瓜,西瓜,地铁,番茄泡");
String lineIndexingVOStr = JSONObject.toJSONString(lineIndexingVO);
Map<String, Object> map = JSONObject.parseObject(lineIndexingVOStr, Map.class);
client.prepareIndex(esIndex, esType, "1").setSource(map).execute();
// 执行后判断(数据存在)
response = client.prepareGet(esIndex, esType, "1").get();
Assert.assertNotNull(response.getSourceAsString());
}
/**4. matchQuery查询**/
/**
* 关键词匹配,global_ana_ch是一个分词的字段可以进行搜索匹配
*/
@Test
public void testMatchQuery() {
String esType = "esType";
String esIndex = "myindex";
// 插入数据
LineIndexingVO lineIndexingVO = new LineIndexingVO();
lineIndexingVO.setId(1L);
lineIndexingVO.setLineNo("LM2017041913250001");
lineIndexingVO.setGlobal_ana_ch("浙江,杭州,冬瓜,西瓜,地铁,番茄泡");
String lineIndexingVOStr = JSONObject.toJSONString(lineIndexingVO);
Map<String, Object> map = JSONObject.parseObject(lineIndexingVOStr, Map.class);
client.prepareIndex(esIndex, esType, "1").setSource(map).execute();
// 执行matchQuery查询
SearchRequestBuilder searchRequestBuilder = client.prepareSearch(esIndex).setTypes(esType);
MatchQueryBuilder matchQuery = QueryBuilders.matchQuery("global_ana_ch", "杭州西湖");
SearchResponse response = searchRequestBuilder.setQuery(matchQuery).setFrom(0).setSize(1).get();
Assert.assertEquals(1, response.getHits().getTotalHits());
}
/**
* 过滤查询
*/
@Test
public void testTerm() {
String esType = "esType";
String esIndex = "myindex";
// 插入数据
LineIndexingVO lineIndexingVO = new LineIndexingVO();
lineIndexingVO.setId(1L);
lineIndexingVO.setLineNo("LM2017041913250001");
lineIndexingVO.setGlobal_ana_ch("浙江,杭州,冬瓜,西瓜,地铁,番茄泡");
String lineIndexingVOStr = JSONObject.toJSONString(lineIndexingVO);
Map<String, Object> map = JSONObject.parseObject(lineIndexingVOStr, Map.class);
client.prepareIndex(esIndex, esType, "1").setSource(map).execute();
// 执行term查询,相当于select * from lg_line where id=1 and lineNo="LM2017041913250001"
SearchRequestBuilder searchRequestBuilder = client.prepareSearch(esIndex).setTypes(esType);
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
boolQueryBuilder.must(QueryBuilders.termQuery("lineNo", "LM2017041913250001"));
// boolQueryBuilder.must(QueryBuilders.termQuery("id", 1));
SearchResponse response = searchRequestBuilder.setQuery(boolQueryBuilder).get();
Assert.assertEquals(1, response.getHits().getTotalHits());
// 执行term查询,相当于select * from lg_line where id=1 and lineNo="LM2017041913250001" and lineNo!="LM2017041913250001"
boolQueryBuilder.mustNot(QueryBuilders.termQuery("lineNo", "LM2017041913250001"));
response = searchRequestBuilder.setQuery(boolQueryBuilder).setFrom(0).setSize(1).get();
Assert.assertEquals(0, response.getHits().getTotalHits());
}
/**
* 排序测试
*/
@Test
public void testOrder() {
String esType = "esType";
String esIndex = "myindex";
// 插入数据
LineIndexingVO lineIndexingVO = new LineIndexingVO();
lineIndexingVO.setId(1L);
lineIndexingVO.setLineNo("LM2017041913250001");
lineIndexingVO.setGlobal_ana_ch("浙江,杭州,冬瓜,西瓜,地铁,番茄泡");
String lineIndexingVOStr = JSONObject.toJSONString(lineIndexingVO);
Map<String, Object> map = JSONObject.parseObject(lineIndexingVOStr, Map.class);
client.prepareIndex(esIndex, esType, "1").setSource(map).execute();
// 第二条数据比第一条少了“杭州”
lineIndexingVO = new LineIndexingVO();
lineIndexingVO.setId(2L);
lineIndexingVO.setLineNo("LM2017041913250002");
lineIndexingVO.setGlobal_ana_ch("浙江,冬瓜,西瓜,地铁,番茄泡");
String lineIndexingVOStr1 = JSONObject.toJSONString(lineIndexingVO);
Map<String, Object> map1 = JSONObject.parseObject(lineIndexingVOStr1, Map.class);
client.prepareIndex(esIndex, esType, "2").setSource(map1).execute();
MatchQueryBuilder matchQuery = QueryBuilders.matchQuery("global_ana_ch", "浙江杭州");
// 根据匹配度倒序排列,匹配度高的排在前面
SearchResponse response = client.prepareSearch(esIndex).setTypes(esType).setQuery(matchQuery).setFrom(0).setSize(2)
.addSort("_score", SortOrder.DESC).get();
Assert.assertEquals("1", response.getHits().iterator().next().getId());
// 根据匹配度顺序排列,匹配度低的排在前面
response = client.prepareSearch(esIndex).setTypes(esType).setQuery(matchQuery).setFrom(0).setSize(2).addSort("_score", SortOrder.ASC).get();
Assert.assertEquals("2", response.getHits().iterator().next().getId());
}
/**7.统计查询**/
@Test
public void testAggs() {
String esType = "esType1";
String esIndex = "aggs";
// 插入数据
LineIndexingVO lineIndexingVO = new LineIndexingVO();
lineIndexingVO.setId(1L);
lineIndexingVO.setLineType("1");
lineIndexingVO.setGlobal_ana_ch("浙江,杭州,冬瓜,西瓜,地铁,番茄泡");
String lineIndexingVOStr1 = JSONObject.toJSONString(lineIndexingVO);
Map<String, Object> map1 = JSONObject.parseObject(lineIndexingVOStr1, Map.class);
client.prepareIndex(esIndex, esType, "1").setSource(map1).execute();
lineIndexingVO = new LineIndexingVO();
lineIndexingVO.setId(2L);
lineIndexingVO.setLineType("1");
lineIndexingVO.setGlobal_ana_ch("浙江,冬瓜,西瓜,地铁,番茄泡");
String lineIndexingVOStr2 = JSONObject.toJSONString(lineIndexingVO);
Map<String, Object> map2 = JSONObject.parseObject(lineIndexingVOStr2, Map.class);
client.prepareIndex(esIndex, esType, "2").setSource(map2).execute();
lineIndexingVO = new LineIndexingVO();
lineIndexingVO.setId(3L);
lineIndexingVO.setLineType("2");
lineIndexingVO.setGlobal_ana_ch("浙江,冬瓜,西瓜,地铁,番茄泡");
String lineIndexingVOStr3 = JSONObject.toJSONString(lineIndexingVO);
Map<String, Object> map3 = JSONObject.parseObject(lineIndexingVOStr3, Map.class);
client.prepareIndex(esIndex, esType, "3").setSource(map3).execute();
/**
* 需要设置索引
* {
"properties": {
"lineType": {
"type": "text",
"fielddata": true
}
}
}
http://47.105.74.94:9200/aggs/_mapping/esType1
*/
// 根据lineType进行分类统计,type=1的有2条,type=2的有1条
TermsAggregationBuilder termsBuilder = AggregationBuilders.terms("by_lineType").field("lineType");
SearchResponse response = client.prepareSearch(esIndex).setTypes(esType).addAggregation(termsBuilder).setSize(10).get();
StringTerms aggregation = response.getAggregations().get("by_lineType");
Assert.assertEquals(2, aggregation.getBucketByKey("1").getDocCount());
Assert.assertEquals(1, aggregation.getBucketByKey("2").getDocCount());
}
class LineIndexingVO{
private double id;
private String lineNo;
private String lineType;
private String global_ana_ch;
public double getId() {
return id;
}
public void setId(double id) {
this.id = id;
}
public String getLineNo() {
return lineNo;
}
public void setLineNo(String lineNo) {
this.lineNo = lineNo;
}
public String getGlobal_ana_ch() {
return global_ana_ch;
}
public void setGlobal_ana_ch(String global_ana_ch) {
this.global_ana_ch = global_ana_ch;
}
public String getLineType() {
return lineType;
}
public void setLineType(String lineType) {
this.lineType = lineType;
}
}
}