一、整合说明
Storm 官方对 Kafka 的整合分为两个版本,官方说明文档分别如下:
- Storm Kafka Integration : 主要是针对 0.8.x 版本的 Kafka 提供整合支持;
- Storm Kafka Integration (0.10.x+) : 包含 Kafka 新版本的 consumer API,主要对 Kafka 0.10.x + 提供整合支持。
这里我服务端安装的 Kafka 版本为 2.2.0(Released Mar 22, 2019) ,按照官方 0.10.x+ 的整合文档进行整合,不适用于 0.8.x 版本的 Kafka。
二、写入数据到Kafka
2.1 项目结构
2.2 项目主要依赖
<properties>
<storm.version>1.2.2</storm.version>
<kafka.version>2.2.0</kafka.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>${storm.version}</version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka-client</artifactId>
<version>${storm.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>${kafka.version}</version>
</dependency>
</dependencies>
2.3 DataSourceSpout
/**
* 产生词频样本的数据源
*/
public class DataSourceSpout extends BaseRichSpout {
private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");
private SpoutOutputCollector spoutOutputCollector;
@Override
public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
this.spoutOutputCollector = spoutOutputCollector;
}
@Override
public void nextTuple() {
// 模拟产生数据
String lineData = productData();
spoutOutputCollector.emit(new Values(lineData));
Utils.sleep(1000);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("line"));
}
/**
* 模拟数据
*/
private String productData() {
Collections.shuffle(list);
Random random = new Random();
int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
return StringUtils.join(list.toArray(), "\t", 0, endIndex);
}
}
产生的模拟数据格式如下:
Spark HBase
Hive Flink Storm Hadoop HBase Spark
Flink
HBase Storm
HBase Hadoop Hive Flink
HBase Flink Hive Storm
Hive Flink Hadoop
HBase Hive
Hadoop Spark HBase Storm
2.4 WritingToKafkaApp
/**
* 写入数据到 Kafka 中
*/
public class WritingToKafkaApp {
private static final String BOOTSTRAP_SERVERS = "hadoop001:9092";
private static final String TOPIC_NAME = "storm-topic";
public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
// 定义 Kafka 生产者属性
Properties props = new Properties();
/*
* 指定 broker 的地址清单,清单里不需要包含所有的 broker 地址,生产者会从给定的 broker 里查找其他 broker 的信息。
* 不过建议至少要提供两个 broker 的信息作为容错。
*/
props.put("bootstrap.servers", BOOTSTRAP_SERVERS);
/*
* acks 参数指定了必须要有多少个分区副本收到消息,生产者才会认为消息写入是成功的。
* acks=0 : 生产者在成功写入消息之前不会等待任何来自服务器的响应。
* acks=1 : 只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应。
* acks=all : 只有当所有参与复制的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应。
*/
props.put("acks", "1");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaBolt bolt = new KafkaBolt<String, String>()
.withProducerProperties(props)
.withTopicSelector(new DefaultTopicSelector(TOPIC_NAME))
.withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper<>());
builder.setSpout("sourceSpout", new DataSourceSpout(), 1);
builder.setBolt("kafkaBolt", bolt, 1).shuffleGrouping("sourceSpout");
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterWritingToKafkaApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalWritingToKafkaApp",
new Config(), builder.createTopology());
}
}
}
2.5 测试准备工作
进行测试前需要启动 Kakfa:
1. 启动Kakfa
Kafka 的运行依赖于 zookeeper,需要预先启动,可以启动 Kafka 内置的 zookeeper,也可以启动自己安装的:
# zookeeper启动命令
bin/zkServer.sh start
# 内置zookeeper启动命令
bin/zookeeper-server-start.sh config/zookeeper.properties
启动单节点 kafka 用于测试:
# bin/kafka-server-start.sh config/server.properties
2. 创建topic
# 创建用于测试主题
bin/kafka-topics.sh --create --bootstrap-server hadoop001:9092 --replication-factor 1 --partitions 1 --topic storm-topic
# 查看所有主题
bin/kafka-topics.sh --list --bootstrap-server hadoop001:9092
3. 启动消费者
启动一个消费者用于观察写入情况,启动命令如下:
# bin/kafka-console-consumer.sh --bootstrap-server hadoop001:9092 --topic storm-topic --from-beginning
2.6 测试
可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用 maven-shade-plugin
进行打包,打包命令如下:
# mvn clean package -D maven.test.skip=true
启动后,消费者监听情况如下:
三、从Kafka中读取数据
3.1 项目结构
3.2 ReadingFromKafkaApp
/**
* 从 Kafka 中读取数据
*/
public class ReadingFromKafkaApp {
private static final String BOOTSTRAP_SERVERS = "hadoop001:9092";
private static final String TOPIC_NAME = "storm-topic";
public static void main(String[] args) {
final TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("kafka_spout", new KafkaSpout<>(getKafkaSpoutConfig(BOOTSTRAP_SERVERS, TOPIC_NAME)), 1);
builder.setBolt("bolt", new LogConsoleBolt()).shuffleGrouping("kafka_spout");
// 如果外部传参 cluster 则代表线上环境启动,否则代表本地启动
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterReadingFromKafkaApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalReadingFromKafkaApp",
new Config(), builder.createTopology());
}
}
private static KafkaSpoutConfig<String, String> getKafkaSpoutConfig(String bootstrapServers, String topic) {
return KafkaSpoutConfig.builder(bootstrapServers, topic)
// 除了分组 ID,以下配置都是可选的。分组 ID 必须指定,否则会抛出 InvalidGroupIdException 异常
.setProp(ConsumerConfig.GROUP_ID_CONFIG, "kafkaSpoutTestGroup")
// 定义重试策略
.setRetry(getRetryService())
// 定时提交偏移量的时间间隔,默认是 15s
.setOffsetCommitPeriodMs(10_000)
.build();
}
// 定义重试策略
private static KafkaSpoutRetryService getRetryService() {
return new KafkaSpoutRetryExponentialBackoff(TimeInterval.microSeconds(500),
TimeInterval.milliSeconds(2), Integer.MAX_VALUE, TimeInterval.seconds(10));
}
}
3.3 LogConsoleBolt
/**
* 打印从 Kafka 中获取的数据
*/
public class LogConsoleBolt extends BaseRichBolt {
private OutputCollector collector;
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector=collector;
}
public void execute(Tuple input) {
try {
String value = input.getStringByField("value");
System.out.println("received from kafka : "+ value);
// 必须 ack,否则会重复消费 kafka 中的消息
collector.ack(input);
}catch (Exception e){
e.printStackTrace();
collector.fail(input);
}
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
}
这里从 value
字段中获取 kafka 输出的值数据。
在开发中,我们可以通过继承 RecordTranslator
接口定义了 Kafka 中 Record 与输出流之间的映射关系,可以在构建 KafkaSpoutConfig
的时候通过构造器或者 setRecordTranslator()
方法传入,并最后传递给具体的 KafkaSpout
。
默认情况下使用内置的 DefaultRecordTranslator
,其源码如下,FIELDS
中 定义了 tuple 中所有可用的字段:主题,分区,偏移量,消息键,值。
public class DefaultRecordTranslator<K, V> implements RecordTranslator<K, V> {
private static final long serialVersionUID = -5782462870112305750L;
public static final Fields FIELDS = new Fields("topic", "partition", "offset", "key", "value");
@Override
public List<Object> apply(ConsumerRecord<K, V> record) {
return new Values(record.topic(),
record.partition(),
record.offset(),
record.key(),
record.value());
}
@Override
public Fields getFieldsFor(String stream) {
return FIELDS;
}
@Override
public List<String> streams() {
return DEFAULT_STREAM;
}
}
3.4 启动测试
这里启动一个生产者用于发送测试数据,启动命令如下:
# bin/kafka-console-producer.sh --broker-list hadoop001:9092 --topic storm-topic
本地运行的项目接收到从 Kafka 发送过来的数据: