close all;
%%
%Step 1: 彩色图像->灰度图像
rgb = imread('pears.png');
I = rgb2gray(rgb);
figure;subplot(121)
imshow(I)
%Step 2: 利用梯度实现图像的分割
%使用sobel算子进行边缘检测,
text(732,501,'Image courtesy of Corel','FontSize',7,'HorizontalAlignment','right')
hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(I), hy, 'replicate');%实现线性空间滤波函数,一种采用滤波处理的影像增强方法。其理论基础是空间卷积和空间相关。目的是改善影像质量,包括去除高频噪声与干扰,及影像边缘增强、线性增强以及去模糊等。
Ix = imfilter(double(I), hx, 'replicate');
gradmag = sqrt(Ix.^2 + Iy.^2);%求模
subplot(122), imshow(gradmag,[]), title('gradmag')
%直接用分水岭
%L=watershed(gradmag);
%Lrgb=label2rgb(L);
%figure;imshow(Lrgb),
%title('Lrgb')
%No. 如果没有额外的预处理,如下面的标记计算,使用分水岭变换直接结果往往是“过度分割。”
% 以下是标记前景和背景物体
%各种程序可以在这里应用到找到前景标记,它必须连接内的每个前景对象的像素的斑点。在这个例子中,你将使用名为“开放由重建”及以上的图像“闭合由重建”为“干净”的形态学技术。这些操作将创建一个可以使用imregionalmax位于每个对象内部平最大值。
%Step 3:形态学开操作
se = strel('disk', 20);%圆形结构元素
Io = imopen(I, se);%形态学开操作
figure;subplot(121)
imshow(Io), title('Io')%显示执行后的图
%Step 4:腐蚀与重建
Ie = imerode(I, se);%对图像进行腐蚀
Iobr = imreconstruct(Ie, I);%对图像进行重建
subplot(122);imshow(Iobr), %显示重建后的图像
title('Iobr')
%Step 5:形态学关操作
Ioc = imclose(Io, se);%形态学关操作
figure;subplot(121)
imshow(Ioc),
title('Ioc')
%Step 6:图像膨胀与求反
Iobrd = imdilate(Iobr, se);%对图像进行膨胀
Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));
Iobrcbr = imcomplement(Iobrcbr);%对图像求反
subplot(122);imshow(Iobrcbr),
title('Iobrcbr')
%%Step 7:获得局部最大值
fgm = imregionalmax(Iobrcbr);%获得局部最大值
figure;imshow(fgm),
title('fgm')
%Step 8:在原图上显示极大值区域
I2 = I;
I2(fgm) = 255;%局部极大值处像素值设为255
figure;imshow(I2),
title('fgm superimposed on original image')%在原图上显示极大值区域
se2 = strel(ones(5,5));%构建元素
fgm2 = imclose(fgm, se2);%关操作
fgm3 = imerode(fgm2, se2);%腐蚀
fgm4 = bwareaopen(fgm3, 20);%开操作
%Step 9:显示修改后的极大区域
I3 = I;
I3(fgm4) = 255;%前景设置为255
figure;subplot(121),
imshow(I3)%显示修改后的极大区域
title('fgm4 superimposed on original image')
%现在标记背景, 在清理后的图像,Iobrcbr,暗像素属于背景,所以你可以从一个阈值操作。
%Step 10:转化为二值图像
bw = im2bw(Iobrcbr, graythresh(Iobrcbr));
subplot(122);imshow(bw),
title('bw')
%背景像素是黑色的,但理想地,我们不希望的背景标记是太靠近我们目标对象的边缘。我们通过'骨骼化'进行细分,对二值图像的距离进行分水岭变换,然后寻找分水岭的界线。
%Step 11:
D = bwdist(bw);%计算距离
DL = watershed(D);%分水岭变换
bgm = DL == 0;%求取分割边界
figure; imshow(bgm), %显示分割后的边界
title('Watershed ridge lines (bgm)')
gradmag2 = imimposemin(gradmag, bgm | fgm4);%置最小值
L = watershed(gradmag2);%分水岭变换
I4 = I;
I4(imdilate(L == 0, ones(3, 3)) | bgm | fgm4) = 255;%前景及边界处置255
figure; subplot(121)
imshow(I4)%突出前景及边界
title('Markers and object boundaries')
Lrgb = label2rgb(L, 'jet', 'w', 'shuffle');%转化为伪彩色图像
subplot(122); imshow(Lrgb)%显示伪彩色图像
title('Colored watershed label matrix')
figure; imshow(I),
hold on
himage = imshow(Lrgb);%在原图上显示伪彩色图像
set(himage, 'AlphaData', 0.3);
title('Lrgb superimposed transparently on original image')
分水岭分割算法 python
转载文章标签 分水岭分割算法 python matlab 算法 代码 编程 彩色图像 Io sed 文章分类 Python 后端开发
-
opencv python分水岭算法 opencv分水岭分割
分水岭分割方法是基于形态学操作一、分水岭分割方法1. 分水岭分割方法 基于浸泡理论的分水岭分割方法 基于连通图的方法 基于距离变换的方法 2. 分水岭算法应用 &
opencv python分水岭算法 opencv 计算机视觉 人工智能 图像分割 -
python 分水岭算法 分水岭算法 matlab
背景 做图像分割的时候用到了,就学习了一下大概思想 把图像中的像素大小理解成山地的海拔,向山地灌水,海拔低的地方会积水,这些地方称之为谷底。随着水位上升,不同谷底的水会相遇,相遇的地方就是分水岭。
python 分水岭算法 matlab 分水岭算法 像素点 连通域