1. 长短期记忆网络

  • 忘记门:将值朝0减少
  • 输入门:决定不是忽略掉输入数据
  • 输出门:决定是不是使用隐状态

2. 门

torch lstm权重初始化 torch.lstm_初始化

3. 候选记忆单元

torch lstm权重初始化 torch.lstm_lstm_02

4. 记忆单元

torch lstm权重初始化 torch.lstm_初始化_03

5. 隐状态

torch lstm权重初始化 torch.lstm_lstm_04

6. 总结

torch lstm权重初始化 torch.lstm_初始化_05

7. 从零实现的代码

我们首先加载时光机器数据集。

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

7.1 初始化模型参数

接下来,我们需要定义和初始化模型参数。 如前所述,超参数num_hiddens定义隐藏单元的数量。 我们按照标准差 0.01 的高斯分布初始化权重,并将偏置项设为 0 。

def get_lstm_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xi, W_hi, b_i = three()  # 输入门参数
    W_xf, W_hf, b_f = three()  # 遗忘门参数
    W_xo, W_ho, b_o = three()  # 输出门参数
    W_xc, W_hc, b_c = three()  # 候选记忆元参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
              b_c, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

7.2 定义模型

初始化函数中, 长短期记忆网络的隐状态需要返回一个额外的记忆元, 单元的值为0,形状为(批量大小,隐藏单元数)。 因此,我们得到以下的状态初始化。

# C和H都要初始化
def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device),
            torch.zeros((batch_size, num_hiddens), device=device))

实际模型的定义与我们前面讨论的一样: 提供三个门和一个额外的记忆元。 请注意,只有隐状态才会传递到输出层, 而记忆元 𝐂𝑡 不直接参与输出计算

def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
     W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
        F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
        O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
        C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * torch.tanh(C)
        Y = (H @ W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H, C)

7.3 训练和预测

让我们通过实例化rnn_scratch中 引入的RNNModelScratch类来训练一个长短期记忆网络, 就如我们在gru中所做的一样。

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
                            init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

运行结果:

torch lstm权重初始化 torch.lstm_lstm_06

8. 简洁实现

使用高级API,我们可以直接实例化LSTM模型。 高级API封装了前文介绍的所有配置细节。 这段代码的运行速度要快得多, 因为它使用的是编译好的运算符而不是Python来处理之前阐述的许多细节。

num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

运行结果:

torch lstm权重初始化 torch.lstm_初始化_07

实际情况下,LSTM和GRU用哪个都可以,性能差不多。

长短期记忆网络是典型的具有重要状态控制的隐变量自回归模型。 多年来已经提出了其许多变体,例如,多层、残差连接、不同类型的正则化。 然而,由于序列的长距离依赖性,训练长短期记忆网络 和其他序列模型(例如门控循环单元)的成本是相当高的。 在后面的内容中,我们将讲述更高级的替代模型,如Transformer

9. Q&A