环境:python3.9 opencv-python 4.5.5.62
首先是录入人脸,信息会保存到py文件的同级目录下的data文件中,data文件要先创建好,否则不能生成文件,然后训练生成trainer/trainer.yml文件,trainer文件也要先创建,然后进行检测就好,代码中用的xml文件的下载地址:代码中的xml文件 haarcascade_frontalface_alt2.xml
haarcascade_frontalface_default.xml
haarcascade的其他文件 haarcascade_eye.xml
haarcascade_eye_tree_eyeglasses.xml
haarcascade_frontalcatface.xml
haarcascade_frontalcatface_extended.xml
haarcascade_frontalface_alt.xml
haarcascade_frontalface_alt_tree.xml
haarcascade_fullbody.xml
haarcascade_lefteye_2splits.xml
haarcascade_licence_plate_rus_16stages.xml
haarcascade_lowerbody.xml
haarcascade_profileface.xml
haarcascade_righteye_2splits.xml
haarcascade_russian_plate_number.xml
haarcascade_smile.xml
haarcascade_upperbody.xml
源码:
录入人脸
# Enter
# 2022/2/17
import cv2
face_name = '' # 该人脸的名字
# 加载OpenCV人脸检测分类器
face_cascade = cv2.CascadeClassifier("E:/data/haarcascade_frontalface_default.xml")
recognizer = cv2.face.LBPHFaceRecognizer_create() # 准备好识别方法LBPH方法
camera = cv2.VideoCapture(0 ,cv2.CAP_DSHOW) # 0:开启摄像头
success, img = camera.read() # 从摄像头读取照片
W_size = 0.1 * camera.get(3) # 在视频流的帧的宽度
H_size = 0.1 * camera.get(4) # 在视频流的帧的高度
def get_face():
print("正在从摄像头录入新人脸信息 \n")
picture_num = 0 # 设置录入照片的初始值
while True: # 从摄像头读取图片
global success # 设置全局变量
global img # 设置全局变量
ret, frame = camera.read() # 获得摄像头读取到的数据(ret为返回值,frame为视频中的每一帧)
if ret is True:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 转为灰度图片
cv2.imshow("gray",gray)
else:
break
face_detector = face_cascade # 记录摄像头记录的每一帧的数据,让Classifier判断人脸
faces = face_detector.detectMultiScale(gray, 1.3, 5) # gray是要灰度图像,1.3为每次图像尺寸减小的比例,5为minNeighbors
for (x, y, w, h) in faces: # 制造一个矩形框选人脸(xy为左上角的坐标,w为宽,h为高)
cv2.rectangle(frame, (x, y), (x + w, y + w), (255, 0, 0))
picture_num += 1 # 照片数加一
t = face_name
print("./data/1." + str(t) + '.' + str(picture_num))
cv2.imwrite("./data/1." + str(t) + '.' + str(picture_num) + '.jpg', gray[y:y + h, x:x + w])
# 保存图像,将脸部的特征转化为二维数组,保存在data文件夹内
maximums_picture = 13 # 设置摄像头拍摄照片的数量的上限
if picture_num > maximums_picture:
break
cv2.waitKey(1000)
get_face()
训练
# Train
# 2022/2/17
import os
import cv2
from PIL import Image
import numpy as np
def getlable(path):
facesamples = [] # 储存人脸数据(该数据为二位数组)
ids = [] # 储存星门数据
imagepaths = [os.path.join(path, f) for f in os.listdir(path)] # 储存图片信息
face_detector = cv2.CascadeClassifier('E:/data/' 'haarcascade_frontalface_alt2.xml') # 加载分类器
print('数据排列:', imagepaths) # 打印数组imagepaths
for imagePath in imagepaths: # 遍历列表中的图片
pil_img = Image.open(imagePath).convert('L')
# 打开图片,灰度化,PIL的两种不同模式:
# (1)1(黑白,有像素的地方为1,无像素的地方为0)
# (2)L(灰度图像,把每个像素点变成0~255的数值,颜色越深值越大)
img_numpy = np.array(pil_img, 'uint8') # 将图像转化为数组
faces = face_detector.detectMultiScale(img_numpy) # 获取人脸特征
id = int(os.path.split(imagePath)[1].split('.')[0]) # 获取每张图片的id和姓名
for x, y, w, h in faces: # 预防无面容照片
ids.append(id)
facesamples.append(img_numpy[y:y + h, x:x + w])
# 打印脸部特征和id
print('id:', id)
print('fs:', facesamples)
return facesamples, ids
if __name__ == '__main__':
path = 'C:/Desktop/py/Face_ Recognition/data' # 图片路径
faces, ids = getlable(path) # 获取图像数组和id标签数组和姓名
recognizer = cv2.face.LBPHFaceRecognizer_create() # 获取训练对象
recognizer.train(faces, np.array(ids))
recognizer.write('trainer/trainer.yml') # 保存生成的人脸特征数据文件
识别
# Recognition
# 2022/2/17
import cv2
import os
# 加载训练数据集文件
recogizer = cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainer.yml') # 获取脸部特征数据文件
names = []
warningtime = 0
def face_detect_demo(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换为灰度图像
face_detector = cv2.CascadeClassifier("E:/data/haarcascade_frontalface_default.xml") # 加载分类器
face = face_detector.detectMultiScale(gray, 1.3, 5, cv2.CASCADE_SCALE_IMAGE, (100, 100), (300, 300))
# 进行识别,把整张人脸部分框起来
for x, y, w, h in face:
cv2.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=2) # 矩形
cv2.circle(img, center=(x + w // 2, y + h // 2), radius=w // 2, color=(0, 255, 0), thickness=1) # 圆形
ids, confidence = recogizer.predict(gray[y:y + h, x:x + w]) # 进行预测、评分
if confidence > 80:
global warningtime
warningtime += 1
if warningtime > 100: # 警报达到一定次数,说明不是这个人
warningtime = 0
cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
else:
cv2.putText(img, str(names[ids - 1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
# 把姓名打到人脸的框图上
cv2.imshow('result', img)
# print('bug:',ids)
def name():
path = 'C:/Users/wangb/Desktop/py/Face_ Recognition/data'
imagepaths = [os.path.join(path, f) for f in os.listdir(path)]
for imagePath in imagepaths:
name1 = str(os.path.split(imagePath)[1].split('.', 2)[1])
names.append(name1)
cap = cv2.VideoCapture(0,cv2.CAP_DSHOW)
name()
while True:
flag, frame = cap.read() # 获得摄像头读取到的数据(flag为返回值,frame为视频中的每一帧)
if not flag:
break
face_detect_demo(frame)
if ord(' ') == cv2.waitKey(10): # 按空格,退出
break
cv2.destroyAllWindows()
cap.release()
# print(names)
识别效果
问题:
如果cv2.VideoCapture(0)
报错: ...\cap_msmf.cpp(435)anonymousnamespace'::SourceReaderCB::~SourceReaderCB terminating async callback
改为:cv2.VideoCapture(0 ,cv2.CAP_DSHOW)
可能是版本兼容问题