使用Prometheus和Grafana监控Spark应用终极方案,通过graphite_exporter将原生数据通过映射文件转化为有 label 维度的 Prometheus 数据
Spark任务启动后,我们通常都是通过跳板机去Spark UI界面查看对应任务的信息,一旦任务多了之后,这将会是让人头疼的问题。如果能将所有任务信息集中起来监控,那将会是很完美的事情。
通过Spark官网指导文档,发现Spark只支持以下sink
Each instance can report to zero or more sinks. Sinks are contained in the org.apache.spark.metrics.sink
package:
ConsoleSink
: Logs metrics information to the console.CSVSink
: Exports metrics data to CSV files at regular intervals.JmxSink
: Registers metrics for viewing in a JMX console.MetricsServlet
: Adds a servlet within the existing Spark UI to serve metrics data as JSON data.GraphiteSink
: Sends metrics to a Graphite node.Slf4jSink
: Sends metrics to slf4j as log entries.StatsdSink
: Sends metrics to a StatsD node.
没有比较常用的Influxdb和Prometheus ~~~
谷歌一把发现要支持influxdb需要使用第三方包,比较有参考意义的是这篇,Monitoring Spark Streaming with InfluxDB and Grafana ,在提交任务的时候增加file和配置文件,但成功永远不会这么轻松。。。
写入influxdb的数据都是以application_id命名的,类似这种application_1533838659288_1030_1_jvm_heap_usage,也就是说每个任务的指标都是在单独的表,最终我们展示在grafana不还得一个一个配置么?
显然这个不是我想要的结果,最终目的就是:一次配置后每提交一个任务自动会在监控上看到。
谷歌是治愈一切的良药,终究找到一个比较完美的解决方案,就是通过graphite_exporter中转数据后接入Prometheus,再通过grafana展示出来。
所以,目前已经实践可行的方案有两个
方案一:
监控数据直接写入influxdb,再通过grafana读取数据做展示,步骤如下:
1.在spark下 conf/metrics.properties 加入以下配置
master.source.jvm.class=org.apache.spark.metrics.source.JvmSource
worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource
driver.source.jvm.class=org.apache.spark.metrics.source.JvmSourc
executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource
*.sink.influx.class=org.apache.spark.metrics.sink.InfluxDbSink
*.sink.influx.protocol=http
*.sink.influx.host=xx.xx.xx.xx
*.sink.influx.port=8086
*.sink.influx.database=sparkonyarn
*.sink.influx.auth=admin:admin
2.在提交任务的时候增加以下配置,并确保以下jar存在
--files /spark/conf/metrics.properties \
--conf spark.metrics.conf=metrics.properties \
--jars /spark/jars/metrics-influxdb-1.1.8.jar,/spark/jars/spark-influx-sink-0.4.0.jar \
--conf spark.driver.extraClassPath=metrics-influxdb-1.1.8.jar:spark-influx-sink-0.4.0.jar \
--conf spark.executor.extraClassPath=metrics-influxdb-1.1.8.jar:spark-influx-sink-0.4.0.jar
缺点:application_id发生变化需要重新配置grafana
方案二(目前在用的):
通过graphite_exporter将原生数据通过映射文件转化为有 label 维度的 Prometheus 数据
1.下载graphite_exporter,解压后执行以下命令,其中graphite_exporter_mapping需要我们自己创建,内容为数据映射文件
nohup ./graphite_exporter --graphite.mapping-config=graphite_exporter_mapping &
例如
mappings:
- match: '*.*.jvm.*.*'
name: jvm_memory_usage
labels:
application: $1
executor_id: $2
mem_type: $3
qty: $4
会将数据转化成 metric name
为 jvm_memory_usage
,label
为 application
,executor_id
,mem_type
,qty
的格式。
application_1533838659288_1030_1_jvm_heap_usage -> jvm_memory_usage{application="application_1533838659288_1030",executor_id="driver",mem_type="heap",qty="usage"}
2.配置 Prometheus 从 graphite_exporter 获取数据,重启prometheus
/path/to/prometheus/prometheus.yml
scrape_configs:
- job_name: 'spark'
static_configs:
- targets: ['localhost:9108']
3.在spark下 conf/metrics.properties 加入以下配置
master.source.jvm.class=org.apache.spark.metrics.source.JvmSource
worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource
driver.source.jvm.class=org.apache.spark.metrics.source.JvmSourc
executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource
*.sink.graphite.class=org.apache.spark.metrics.sink.GraphiteSink
*.sink.graphite.protocol=tcp
*.sink.graphite.host=xx.xx.xx.xx
*.sink.graphite.port=9109
*.sink.graphite.period=5
*.sink.graphite.unit=seconds
4.提交spark任务的时候增加 --files /spark/conf/metrics.properties
5.最后在grafana创建prometheus数据源,创建需要的指标,最终效果如下,有新提交的任务不需要再配置监控,直接选择application_id就可以看对应的信息
需要用到的jar包
https://repo1.maven.org/maven2/com/izettle/metrics-influxdb/1.1.8/metrics-influxdb-1.1.8.jar
https://mvnrepository.com/artifact/com.palantir.spark.influx/spark-influx-sink
模板
mappings:
- match: '*.*.executor.filesystem.*.*'
name: filesystem_usage
labels:
application: $1
executor_id: $2
fs_type: $3
qty: $4
- match: '*.*.executor.threadpool.*'
name: executor_tasks
labels:
application: $1
executor_id: $2
qty: $3
- match: '*.*.executor.jvmGCTime.count'
name: jvm_gcTime_count
labels:
application: $1
executor_id: $2
- match: '*.*.executor.*.*'
name: executor_info
labels:
application: $1
executor_id: $2
type: $3
qty: $4
- match: '*.*.jvm.*.*'
name: jvm_memory_usage
labels:
application: $1
executor_id: $2
mem_type: $3
qty: $4
- match: '*.*.jvm.pools.*.*'
name: jvm_memory_pools
labels:
application: $1
executor_id: $2
mem_type: $3
qty: $4
- match: '*.*.BlockManager.*.*'
name: block_manager
labels:
application: $1
executor_id: $2
type: $3
qty: $4
- match: '*.driver.DAGScheduler.*.*'
name: DAG_scheduler
labels:
application: $1
type: $2
qty: $3
- match: '*.driver.*.*.*.*'
name: task_info
labels:
application: $1
task: $2
type1: $3
type2: $4
qty: $5
graphite_exporter_mapping
参考资料
https://github.com/palantir/spark-influx-sink
https://spark.apache.org/docs/latest/monitoring.html
https://www.linkedin.com/pulse/monitoring-spark-streaming-influxdb-grafana-christian-g%C3%BCgi
https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/prometheus/graphite_exporter
https://prometheus.io/download/
https://rokroskar.github.io/monitoring-spark-on-hadoop-with-prometheus-and-grafana.html
https://www.jianshu.com/p/274380bb0974