什么是rowkey

Hbase是一个分布式的、面向列的数据库,它和一般关系型数据库的最大区别是:HBase很适合于存储非结构化的数据,还有就是它基于列的而不是基于行的模式.

Hbase是采用K,V存储的,那Rowkey就是KeyValue的Key了,Rowkey也是一段二进制码流,最大长度为64KB,内容可以由使用的用户自定义。数据加载时,一般也是根据Rowkey的二进制序由小到大进行的。

HBase是根据Rowkey来进行检索的,系统通过找到某个Rowkey (或者某个 Rowkey 范围)所在的Region,然后将查询数据的请求路由到该Region获取数据。HBase的检索支持3种方式:

 1 通过单个Rowkey访问,即按照某个Rowkey键值进行get操作,这样获取唯一一条记录;
 2 通过Rowkey的range进行scan,即通过设置startRowKey和endRowKey,在这个范围内进行扫描。这样可以按指定的条件获取一批记录;
 3全表扫描,即直接扫描整张表中所有行记录。
 HBASE按单个Rowkey检索的效率是很高的,耗时在1毫秒以下,每秒钟可获取1000~2000条记录,不过非key列的查询很慢。

我们常说看一张 HBase 表设计的好不好,就看它的 RowKey 设计的好不好。可见 RowKey 在 HBase 中的地位。那么 RowKey 到底是什么?RowKey 的特点如下:
类似于 MySQL、Oracle中的主键,用于标示唯一的行;
完全是由用户指定的一串不重复的字符串;
HBase 中的数据永远是根据 Rowkey 的字典排序来排序的。

RowKey的作用

1读写数据时通过 RowKey 找到对应的 Region;
2 MemStore 中的数据按 RowKey 字典顺序排序;
3 HFile 中的数据按 RowKey 字典顺序排序。

Rowkey对查询的影响

如果我们的 RowKey 设计为 uid+phone+name,那么这种设计可以很好的支持以下的场景:
uid = 111 AND phone = 123 AND name = zs
uid = 111 AND phone = 123
uid = 111 AND phone = 12?
uid = 111

难以支持的场景:

phone = 123 AND name = zs
phone = 123
name = zs

Rowkey对Region划分影响

HBase 表的数据是按照 Rowkey 来分散到不同 Region,不合理的 Rowkey 设计会导致热点问题。热点问题是大量的


hbase rowkey uuid 有序 hbase rowkey范围查询_rowkey

如上图,Region1 上的数据是 Region 2 的5倍,这样会导致 Region1 的访问频率比较高,进而影响这个 Region 所在机器的其他 Region。

RowKey设计技巧

我们如何避免上面说到的热点问题呢?这就是这章节谈到的三种方法。
一.避免热点的方法

这里的加盐不是密码学中的加盐,而是在rowkey 的前面增加随机数。具体就是给 rowkey 分配一个随机前缀 以使得它和之前排序不同。分配的前缀种类数量应该和你想使数据分散到不同的 region 的数量一致。 如果你有一些 热点 rowkey 反复出现在其他分布均匀的 rwokey 中,加盐是很有用的。考虑下面的例子:它将写请求分散到多个 RegionServers,但是对读造成了一些负面影响。

假如你有下列

foo0001

foo0002

foo0003

foo0004

现在,假如你需要将上面这个

a-foo0003

b-foo0001

c-foo0004

d-foo0002

所以,你可以向4个不同的 region 写。理论上说,如果这四个 Region 存放在不同的机器上,经过加盐之后你将拥有之前4倍的吞吐量。
现在,如果再增加一行,它将随机分配a,b,c,d中的一个作为前缀,并以一个现有行作为尾部结束:

a-foo0003

b-foo0001

c-foo0003

c-foo0004

d-foo0002

因为分配是随机的,所以如果你想要以字典序取回数据,你需要做更多工作。加盐这种方式增加了写时的吞吐量,但是当读时有了额外代价。

 

二.避免热点的方法

Hashing 的原理是计算 RowKey 的 hash 值,然后取 hash 的部分字符串和原来的 RowKey 进行拼接。这里说的 hash 包含 MD5、sha1、sha256或sha512等算法。比如我们有如下的 RowKey:

foo0001

foo0002

foo0003

foo0004

我们使用

95f18cfoo0001

6ccc20foo0002

b61d00foo0003

1a7475foo0004

优缺点:可以一定程度打散整个数据集,但是不利于 Scan;比如我们使用 md5 算法,来计算Rowkey的md5值,然后截取前几位的字符串。subString(MD5(设备ID), 0, x) + 设备ID,其中x一般取5或6。

三.避免热点的方法

Reversing 的原理是反转一段固定长度或者全部的键。比如我们有以下 URL ,并作为 RowKey:

flink.xiguage.com

www.xiguage.com

carbondata.xiguage.com

def.xiguage.com

这些

moc.egaugix.knilf

moc.egaugix.www

moc.egaugix.atadnobrac

moc.egaugix.fed

经过这个之后,这些

RowKey的长度

RowKey 可以是任意的字符串,最大长度64KB(因为 Rowlength 占2字节)。建议越短越好,原因如下:
数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;

MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率;
目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性。

RowKey 设计案例剖析

交易类表

1.查询某个卖家某段时间内的交易记录
sellerId + timestamp + orderId2.查询某个买家某段时间内的交易记录
buyerId + timestamp +orderId3.根据订单号查询
orderNo4.如果某个商家卖了很多商品,可以如下设计 Rowkey 实现快速搜索
salt + sellerId + timestamp 其中,salt 是随机数。
可以支持的场景:

全表 Scan
按照 sellerId 查询
按照

金融风控

查询某个用户的用户画像数据
prefix + uid
prefix + idcard
prefix + tele
其中

车联网

查询某辆车在某个时间范围的交易记录
carId + timestamp某批次的车太多,造成热点
prefix + carId + timestamp 其中

查询最近的数据

查询用户最新的操作记录或者查询用户某段时间的操作记录,RowKey 设计如下:
uid + Long.Max_Value - timestamp
支持的场景

查询用户最新的操作记录
Scan [uid] startRow [uid][000000000000] stopRow [uid][Long.Max_Value - timestamp]

查询用户某段时间的操作记录
Scan [uid] startRow [uid][Long.Max_Value – startTime] stopRow [uid][Long.Max_Value - endTime]

如果 RowKey 无法满足我们的需求,可以尝试二级索引。Phoenix、Solr 以及 ElasticSearch 都可以用于构建二级索引。