Leader选举
Leader选举是保证分布式数据一致性的关键所在。当Zookeeper集群中的一台服务器出现以下两种情况之一时,需要进入Leader选举。
- 服务器初始化启动。
- 服务器运行期间无法和Leader保持连接。
下面就两种情况进行分析讲解。
1. 服务器启动时期的Leader选举
在集群初始化阶段,当有一台服务器Server1启动时,该Server1处于Looking状态,其单独无法进行和完成Leader选举;当第二台服务器Server2启动时,此时两台机器可以相互通信,每台机器都试图找到Leader,于是进入Leader选举过程。选举过程如下:
- 1:每个Server发出一个投票。初始情况Server1和Server2都会将自己作为Leader服务器来进行投票,每次投票会包含所推举的服务器的myid和ZXID,使用(myid, ZXID)来表示,此时Server1的投票为(1, 0),Server2的投票为(2, 0),然后各自将这个投票发给集群中其他机器。
- 2:接受来自各个服务器的投票。集群的每个服务器收到投票后,首先判断该投票的有效性,如检查是否是本轮投票、是否来自LOOKING状态的服务器。
- 3:处理投票。针对每一个投票,服务器都需要将别人的投票和自己的投票进行PK,PK规则如下:
优先检查ZXID(集群范围内,全局单调唯一递增;)。ZXID比较大的服务器优先作为Leader。
ZXID是一个64位的数字,低32代表一个单调递增的计数器,高32位代表Leader周期。
ZXID变化:当有新的Leader产生时,Leader周期epoch加1,计数器从0开始;每处理一个事务请求,计数器加1;
epoch:可以理解为当前集群所处的年代或者周期,每个leader就像皇帝,都有自己的年号,所以每次改朝换代,leader变更之后,都会在前一个年代的基础上加1。这样就算旧的leader崩溃恢复之后,也没有人听他的了,因为follower只听从当前年代的leader的命令。
可以用cat currentEpoch命令查看epoch
查看当前的epoch:
当前epoch是8。现在将leader stop,剩余两台机器会重新选举一个leader:
此时epoch是9,即与ZAB协议一致。
- 4:如果ZXID相同,那么就比较myid。myid较大的服务器作为Leader服务器。
- 5:对于Server1而言,它的投票是(1, 0),接收Server2的投票为(2, 0),首先会比较两者的ZXID,均为0,再比较myid,此时Server2的myid最大,于是更新自己的投票为(2, 0),然后重新投票,对于Server2而言,其无须更新自己的投票,只是再次向集群中所有机器发出上一次投票信息即可。
- 6:统计投票。每次投票后,服务器都会统计投票信息,判断是否已经有过半机器接受到相同的投票信息,对于Server1、Server2而言,都统计出集群中已经有两台机器接受了(2, 0)的投票信息,此时便认为server2是Leader。
- 7:改变服务器状态。一旦确定了Leader,每个服务器就会更新自己的状态,如果是Follower,那么就变更为FOLLOWING,如果是Leader,就变更为LEADING。
服务器运行时期的Leader选举
在Zookeeper运行期间,Leader与非Leader服务器各司其职,即便当有非Leader服务器宕机或新加入,此时也不会影响Leader,但是一旦Leader服务器挂了,那么整个集群将暂停对外服务,进入新一轮Leader选举,其过程和启动时期的Leader选举过程基本一致。假设正在运行的有Server1、Server2、Server3三台服务器,当前Leader是Server2,若某一时刻Leader挂了,此时便开始Leader选举。选举过程如下
- 变更状态。Leader挂后,余下的非Observer服务器都会讲自己的服务器状态变更为LOOKING,然后开始进入Leader选举过程。
- 每个Server会发出一个投票。在运行期间,每个服务器上的ZXID可能不同,此时假定Server1的ZXID为123,Server3的ZXID为122;在第一轮投票中,Server1和Server3都会投自己,产生投票(1, 123),(3, 122),然后各自将投票发送给集群中所有机器。
- 接收来自各个服务器的投票。与启动时过程相同。
- 处理投票。与启动时过程相同,此时,Server1将会成为Leader。
- 统计投票。与启动时过程相同。
- 改变服务器的状态。与启动时过程相同。
2 Leader选举算法分析
在3.4.0后的Zookeeper的版本只保留了TCP版本的FastLeaderElection选举算法。当一台机器进入Leader选举时,当前集群可能会处于以下两种状态
- 集群中已经存在Leader。
- 集群中不存在Leader。
对于集群中已经存在Leader而言,此种情况一般都是某台机器启动得较晚,在其启动之前,集群已经在正常工作,对这种情况,该机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器而言,仅仅需要和Leader机器建立起连接,并进行状态同步即可。而在集群中不存在Leader情况下则会相对复杂,其步骤如下
(1) 第一次投票。无论哪种导致进行Leader选举,集群的所有机器都处于试图选举出一个Leader的状态,即LOOKING状态,LOOKING机器会向所有其他机器发送消息,该消息称为投票。投票中包含了SID(服务器的唯一标识 myid)和ZXID(事务ID),(SID(myid), ZXID)形式来标识一次投票信息。假定Zookeeper由5台机器组成,SID分别为1、2、3、4、5,ZXID分别为9、9、9、8、8,并且此时SID为2的机器是Leader机器,某一时刻,1、2所在机器出现故障,因此集群开始进行Leader选举。在第一次投票时,每台机器都会将自己作为投票对象,于是SID为3、4、5的机器投票情况分别为(3, 9),(4, 8), (5, 8)。
(2) 变更投票。每台机器发出投票后,也会收到其他机器的投票,每台机器会根据一定规则来处理收到的其他机器的投票,并以此来决定是否需要变更自己的投票,这个规则也是整个Leader选举算法的核心所在,其中术语描述如下
· vote_sid:接收到的投票中所推举Leader服务器的SID。
· vote_zxid:接收到的投票中所推举Leader服务器的ZXID。
· self_sid:当前服务器自己的SID。
· self_zxid:当前服务器自己的ZXID。
每次对收到的投票的处理,都是对(vote_sid, vote_zxid)和(self_sid, self_zxid)对比的过程。
规则一:如果vote_zxid大于self_zxid,就认可当前收到的投票,并再次将该投票发送出去。
规则二:如果vote_zxid小于self_zxid,那么坚持自己的投票,不做任何变更。
规则三:如果vote_zxid等于self_zxid,那么就对比两者的SID,如果vote_sid大于self_sid,那么就认可当前收到的投票,并再次将该投票发送出去。
规则四:如果vote_zxid等于self_zxid,并且vote_sid小于self_sid,那么坚持自己的投票,不做任何变更。
结合上面规则,给出下面的集群变更过程。
(3) 确定Leader。经过第二轮投票后,集群中的每台机器都会再次接收到其他机器的投票,然后开始统计投票,如果一台机器收到了超过半数的相同投票,那么这个投票对应的SID机器即为Leader。此时Server3将成为Leader。
由上面规则可知,通常那台服务器上的数据越新(ZXID会越大),其成为Leader的可能性越大,也就越能够保证数据的恢复。如果ZXID相同,则SID越大机会越大。
3 Leader选举实现细节
1. 服务器状态
服务器具有四种状态,分别是LOOKING、FOLLOWING、LEADING、OBSERVING。
LOOKING:寻找Leader状态。当服务器处于该状态时,它会认为当前集群中没有Leader,因此需要进入Leader选举状态。
FOLLOWING:跟随者状态。表明当前服务器角色是Follower。
LEADING:领导者状态。表明当前服务器角色是Leader。
OBSERVING:观察者状态。表明当前服务器角色是Observer。
2. 投票数据结构
每个投票中包含了两个最基本的信息,所推举服务器的SID和ZXID,投票(Vote)在Zookeeper中包含字段如下
id:被推举的Leader的SID。
zxid:被推举的Leader事务ID。
electionEpoch:逻辑时钟,用来判断多个投票是否在同一轮选举周期中,该值在服务端是一个自增序列,每次进入新一轮的投票后,都会对该值进行加1操作。
state:当前服务器的状态。
3. QuorumCnxManager:网络I/O
每台服务器在启动的过程中,会启动一个QuorumPeerManager,负责各台服务器之间的底层Leader选举过程中的网络通信。
除接收队列以外,其他队列都按照SID分组形成队列集合,如一个集群中除了自身还有3台机器,那么就会为这3台机器分别创建一个发送队列,互不干扰。
- recvQueue:消息接收队列,用于存放那些从其他服务器接收到的消息(接收队列不会按照sid(myid)进行分组)。
- queueSendMap:消息发送队列,用于保存那些待发送的消息,按照SID进行分组。
- senderWorkerMap:发送器集合,每个SenderWorker消息发送器,都对应一台远程Zookeeper服务器,负责消息的发送,也按照SID进行分组。
- lastMessageSent:最近发送过的消息,为每个SID保留最近发送过的一个消息。
一旦连接建立,就会根据远程服务器的SID来创建相应的消息发送器SendWorker和消息接收器RecvWorker,并启动。
(3) 消息接收与发送。
- 消息接收:由消息接收器RecvWorker负责,由于Zookeeper为每个远程服务器都分配一个单独的RecvWorker,因此,每个RecvWorker只需要不断地从这个TCP连接中读取消息,并将其保存到recvQueue队列中。
- 消息发送:由于Zookeeper为每个远程服务器都分配一个单独的SendWorker,因此,每个SendWorker只需要不断地从对应的消息发送队列中获取出一个消息发送即可,同时将这个消息放入lastMessageSent中。在SendWorker中,一旦Zookeeper发现针对当前服务器的消息发送队列为空,那么此时需要从lastMessageSent中取出一个最近发送过的消息来进行再次发送,这是为了解决接收方在消息接收前或者接收到消息后服务器挂了,导致消息尚未被正确处理。同时,Zookeeper能够保证接收方在处理消息时,会对重复消息进行正确的处理。
4. FastLeaderElection:选举算法核心
- 外部投票:特指其他服务器发来的投票。
- 内部投票:服务器自身当前的投票。
- 选举轮次:Zookeeper服务器Leader选举的轮次,即logicalclock。
- PK:对内部投票和外部投票进行对比来确定是否需要变更内部投票。
(1) 选票管理
- sendqueue:选票发送队列,用于保存待发送的选票。
- recvqueue:选票接收队列,用于保存接收到的外部投票。
- WorkerReceiver:选票接收器。其会不断地从QuorumCnxManager中获取其他服务器发来的选举消息,并将其转换成一个选票,然后保存到recvqueue中,在选票接收过程中,如果发现该外部选票的选举轮次小于当前服务器的,那么忽略该外部投票,同时立即发送自己的内部投票。
- WorkerSender:选票发送器,不断地从sendqueue中获取待发送的选票,并将其传递到底层QuorumCnxManager中。
(2) 算法核心
上图展示了FastLeaderElection模块是如何与底层网络I/O进行交互的。Leader选举的基本流程如下
1. 自增选举轮次。Zookeeper规定所有有效的投票都必须在同一轮次中,在开始新一轮投票时,会首先对logicalclock进行自增操作。
如上面例子中的:初始情况Server1和Server2都会将自己作为Leader服务器来进行投票,每次投票会包含所推举的服务器的myid和ZXID,使用(myid, ZXID)来表示,此时Server1的投票为(1, 0),Server2的投票为(2, 0),对于Server1而言,它的投票是(1, 0),接收Server2的投票为(2, 0),首先会比较两者的ZXID,均为0,再比较myid,此时Server2的myid最大,于是更新自己的投票为(2, 0),然后重新投票,对于Server2而言,其无须更新自己的投票,只是再次向集群中所有机器发出上一次投票信息即可。
Zookeeper会将刚刚初始化好的选票放入sendqueue中,由发送器WorkerSender负责发送出去。如:Server1 发送投票(2, 0)给Server2,Server2再次 发送投票(2, 0)给Server1
如:Server2 接收Server1的投票(2, 0),Server1 接收Server2的投票(2, 0)
Server1 Server2 的epoch(选举轮次)都是1,即相同,处理投票结果
外部投票的选举轮次大于内部投票。若服务器自身的选举轮次落后于该外部投票对应服务器的选举轮次,那么就会立即更新自己的选举轮次(logicalclock(选举轮次epoch)),并且清空所有已经收到的投票,然后使用初始化的投票来进行PK以确定是否变更内部投票。最终再将内部投票发送出去。
外部投票的选举轮次小于内部投票。若服务器接收的外选票的选举轮次落后于自身的选举轮次,那么Zookeeper就会直接忽略该外部投票,不做任何处理,并返回步骤4。
外部投票的选举轮次等于内部投票。此时可以开始进行选票PK。
6. 选票PK。
· 若选举轮次一致,那么就对比两者的ZXID,若外部投票的ZXID大,那么需要变更投票。
· 若两者的ZXID一致,那么就对比两者的SID,若外部投票的SID大,那么就需要变更投票。
那么就变更投票,即使用外部投票的选票信息来覆盖内部投票,变更完成后,再次将这个变更后的内部投票发送出去。
(按照服务队的SID区别,如{Server1(1, 0), Server2(2, 0)...等等})。
9. 统计投票。统计集群中是否已经有过半的服务器认可了当前的内部投票,如果确定已经有过半服务器认可了该投票,则终止投票。否则返回步骤4。
对于Server1、Server2而言,都统计出集群中已经有两台机器接受了(2, 0)的投票信息,此时便认为server2是Leader。
以上10个步骤就是FastLeaderElection的核心,其中步骤4-9会经过几轮循环,直到有Leader选举产生。
三、总结
选举轮次,也就是逻辑时钟,即logicalclock。这个值,不会频繁变化,一次选举,自增一次。一次选举过程中,可能包括多次投票,投票不涉及逻辑时钟的自增。
举例,初始情况下5台机器,sid分别为1、2、3、4、5,逻辑时钟都是0。依次启动后,开始选举,所有的机器逻辑时钟自增为1。经过多次投票,假设第三台机器为leader,其他4台机器为follower,此时5台机器的逻辑时钟都为1。
一般情况下,逻辑时钟应该都是相同的。但是,由于一些机器崩溃的问题,是可能出现逻辑时钟不一致的情况的。例如,上例中,sid=3的机器为leader。之后某一刻,sid为1、3的机器崩溃,zookeeper仍然可以正常对外提供服务。但需要重新选主,剩下的2、4、5重新投票选主,假设sid=5成为新的leader,逻辑时钟自增,由1变成2。之后某一刻,sid为5的机器奔溃,sid为1的机器复活,仍然有3台机器运行,zookeeper可以对外提供服务,但需要重新选主。重新选主,逻辑时钟自增,这时sid为2、4的机器的逻辑时钟是由2自增为3,而sid为1的机器的逻辑时钟是由1自增为2。这种情况下,就出现了逻辑时钟不一致的情况。这时,需要清楚sid为1的机器内部的投票数据,因为这些投票数据都是过时的数据。