目录
介绍
张量初始化
1.张量可以直接从数据中创建。 数据类型是自动推断的。
2.张量通过numpy 中的数组进行初始化。
3.通过别的张量进行初始化
4.使用随机数或常数初始化:
Tensor 属性
张量运算
连接张量
算术运算
单元素张量
in-place 操作
与 NumPy 桥接
Tensor to NumPy array
NumPy array to Tensor
参考
介绍
Tensor 是一种特殊的数据结构,与数组和矩阵非常相似。 在 PyTorch 中,我们使用张量来编码模型的输入和输出,以及模型的参数。
张量类似于 NumPy 的 ndarray,除了张量可以在 GPU 或其他硬件加速器上运行。 事实上,张量和 NumPy 数组通常可以共享相同的底层内存,从而无需复制数据。 张量还针对自动微分进行了优化。
import torch
import numpy as np
张量初始化
张量有很多方式初始化。
1.张量可以直接从数据中创建。 数据类型是自动推断的。
data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)
2.张量通过numpy 中的数组进行初始化。
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
3.通过别的张量进行初始化
新张量保留参数张量的属性(形状、数据类型),除非显式覆盖。
x_ones = torch.ones_like(x_data) # retains the properties of x_data
print(f"Ones Tensor: \n {x_ones} \n")
x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data
print(f"Random Tensor: \n {x_rand} \n")
output:
Ones Tensor:
tensor([[1, 1],
[1, 1]])
Random Tensor:
tensor([[0.2047, 0.2984],
[0.2160, 0.2763]])
4.使用随机数或常数初始化:
shape 是张量维度的元组。 在下面的函数中,它决定了输出张量的维度。
shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")
out:
Random Tensor:
tensor([[0.3999, 0.7222, 0.3077],
[0.1161, 0.3216, 0.7987]])
Ones Tensor:
tensor([[1., 1., 1.],
[1., 1., 1.]])
Zeros Tensor:
tensor([[0., 0., 0.],
[0., 0., 0.]])
Tensor 属性
张量属性描述了它们的形状、数据类型和存储它们的设备。
tensor = torch.rand(3,4)
print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
out:
Shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu
张量运算
张量运算有 100 种,包括算术、线性代数、矩阵操作(转置、索引、切片)、采样等。
这些操作中的每一个都可以在 GPU 上运行(通常以比 CPU 更高的速度)。默认情况下,张量是在 CPU 上创建的。 我们需要使用 .to 方法(在检查 GPU 可用性之后)将张量显式移动到 GPU。(请记住,跨设备复制大张量在时间和内存方面可能会很昂贵!)
# We move our tensor to the GPU if available
if torch.cuda.is_available():
tensor = tensor.to("cuda")
标准的类似 numpy 的索引和切片:
tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
tensor[:,1] = 0
print(tensor)
out:
First row: tensor([1., 1., 1., 1.])
First column: tensor([1., 1., 1., 1.])
Last column: tensor([1., 1., 1., 1.])
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
连接张量
使用 torch.cat 沿给定维度连接一系列张量。
t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)
out:
tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]])
算术运算
# This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)
y3 = torch.rand_like(tensor)
torch.matmul(tensor, tensor.T, out=y3)
# This computes the element-wise product. z1, z2, z3 will have the same value
z1 = tensor * tensor
z2 = tensor.mul(tensor)
z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
单元素张量
如果您有一个单元素张量,通过将张量的所有值聚合为一个值,可以使用 item() 将其转换为 Python 数值:
agg = tensor.sum()
agg_item = agg.item()
print(agg_item, type(agg_item))
out:
12.0 <class 'float'>
in-place 操作
将结果存储到操作数中的操作称为in-place 操作(就地操作)。 它们用 _ 后缀表示。 例如:x.copy_(y),x.t_(),会改变x。
print(f"{tensor} \n")
tensor.add_(5)
print(tensor)
out:
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
tensor([[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.]])
注意:就地操作可以节省一些内存,但在计算导数时可能会出现问题,因为会立即丢失历史记录。 因此,不鼓励使用它们。
与 NumPy 桥接
CPU 和 NumPy 数组上的张量可以共享它们的底层内存位置,改变一个会改变另一个。
Tensor to NumPy array
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
out:
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]
A change in the tensor reflects in the NumPy array.
t.add_(1)
print(f"t: {t}")
print(f"n: {n}")
out:
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]
NumPy array to Tensor
A change in the tensor reflects in the NumPy array.
n = np.ones(5)
t = torch.from_numpy(n)
np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")
out:
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]
参考
官方文档:Tensors — PyTorch Tutorials 1.11.0+cu102 documentation
本文是对官方文档的翻译,第一遍基础知识建议大家看翻译,第二遍建议边用边查官方文档,大家一起加油啊~