1.基本原理:

采用维纳滤波器抑制估计出来的噪声

时域与频域状态下:Y = N + S (Y:原始信号,S:纯净声音,N:噪音)

根据中心极限定义,一般认为噪声和语音分布服从均值为0,方差为ui的正态分布

中心思想:从Y中估计噪声N,然后抑制N以得到语音

估计噪声方法: 对似然比函数进行改进,将多个语音/噪声分类特征合并到一个模型中形成一个多特征综合概率密度函数,对输入的每帧频谱进行分析。其可以有效抑制风扇/办公设备等噪声。

2.处理过程

java 降噪算法 降噪计算_傅里叶变换

 

 

 1)加窗

for (i = 0; i < inst->anaLen; i++) {
      winData[i] = inst->window[i] * inst->dataBuf[i];
      energy1 += winData[i] * winData[i];
    }

采用hanning窗

汉宁窗公式如下:

java 降噪算法 降噪计算_概率密度_02

 

 

 特征:升余弦函数,消去高频干扰和漏能,适用于非周期性的连续信号

图特征如下:

java 降噪算法 降噪计算_java 降噪算法_03

 

 

2) 傅里叶变换

采用实傅里叶变换

WebRtc_rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);

将原始数据进行时域到频域的变换,此处采用蝶形算法进行快速傅里叶变换

得到实部虚部与能量值

magn = sqrt(real*real+imag*imag)

imag[inst->magnLen - 1] = 0; //虚部
    real[inst->magnLen - 1] = winData[1]; //实部
    magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f); //增强幅度
fTmp = real[i] * real[i];
      fTmp += imag[i] * imag[i];
      signalEnergy += fTmp;
      magn[i] = ((float)sqrt(fTmp)) + 1.0f

3)计算频谱平坦度

频谱平坦度介绍:

属于三个特征集中的一个特征,假设语音比噪音有更多的谐波,语音频谱往往在基频和谐波中出现峰值,噪音则相对比较平坦,即平坦度越高,噪音概率越高。

公式

 

java 降噪算法 降噪计算_i++_04

 

 

 几何平均值/算数平均值

代码为加速计算实现过程如下,采用取Log操作将几何平均值的计算转为加法

java 降噪算法 降噪计算_傅里叶变换_05

 

 

 代码如下:

为了使特征差异不明显,对结果数据进行了取历史数据的平滑操作

void WebRtcNs_ComputeSpectralFlatness(NSinst_t* inst, float* magnIn) {
  int i;
  int shiftLP = 1; //option to remove first bin(s) from spectral measures
  float avgSpectralFlatnessNum, avgSpectralFlatnessDen, spectralTmp;

  // comute spectral measures
  // for flatness  跳过第一个频点,即直流频点Den是denominator(分母)的缩写,avgSpectralFlatnessDen是上述公式分母计算用到的  
  avgSpectralFlatnessNum = 0.0;
  avgSpectralFlatnessDen = inst->sumMagn;
  for (i = 0; i < shiftLP; i++) {
    avgSpectralFlatnessDen -= magnIn[i];
  }
  // compute log of ratio of the geometric to arithmetic mean: check for log(0) case
  //TVAG是time-average的缩写,对于能量出现异常的处理。利用前一次平坦度直接取平均返回。  ??
  //修正:将本次结果处理为0后返回

  for (i = shiftLP; i < inst->magnLen; i++) {
    if (magnIn[i] > 0.0) {
      avgSpectralFlatnessNum += (float)log(magnIn[i]);
    } else {
      inst->featureData[0] -= SPECT_FL_TAVG * inst->featureData[0];
      return;
    }
  }
  //normalize
  avgSpectralFlatnessDen = avgSpectralFlatnessDen / inst->magnLen;
  avgSpectralFlatnessNum = avgSpectralFlatnessNum / inst->magnLen;

  //ratio and inverse log: check for case of log(0)
  spectralTmp = (float)exp(avgSpectralFlatnessNum) / avgSpectralFlatnessDen;

  //time-avg update of spectral flatness feature
  inst->featureData[0] += SPECT_FL_TAVG * (spectralTmp - inst->featureData[0]);
  // done with flatness feature
}

 

4)噪声初步估计

中心思想:采用分位数估计法

分位数估计的基本思想:通过选择数列中的特定值来进行类别划分

假设噪声在整个频谱中属于能量值较低的部分,对能量值进行排序后取较小的部分

为了方便计算采用对数分位数估计法。

噪声估计过程如下:

调用一次处理函数算一帧,代码中用blockInd标记

java 降噪算法 降噪计算_概率密度_06

 

 分位数估计过程如下:

java 降噪算法 降噪计算_傅里叶变换_07

 

 

 代码实现过程如下:

对原始能量值取对数,进行对数分位数估计,lquantile存储计算的对数结果。

density为概率密度, 用来更新系数delta

基本思想:设定log(噪声)初始化为8.0 (log(mag)频谱最大值为10),设定0.3的概率密度,对lquantile进行加操作更新,

当大于原始频谱的时候则进行减操作更新,当估计与原始频谱值差距减小的时候则增加概率密度,减少每次对lq的删改操作。

使lq无限逼近原始频谱。

void WebRtcNs_NoiseEstimation(NSinst_t* inst, float* magn, float* noise) {
  int i, s, offset;
  float lmagn[HALF_ANAL_BLOCKL], delta;
  //updates帧计数 
  if (inst->updates < END_STARTUP_LONG) {
    inst->updates++;
  }

  for (i = 0; i < inst->magnLen; i++) {
    lmagn[i] = (float)log(magn[i]);
  }

  // loop over simultaneous estimates  三阶段估计 计算三次
  for (s = 0; s < SIMULT; s++) {
    offset = s * inst->magnLen;

    // newquantest(...)
    for (i = 0; i < inst->magnLen; i++) {


      // compute delta
      if (inst->density[offset + i] > 1.0) {
        delta = FACTOR * (float)1.0 / inst->density[offset + i];
      } else {
        delta = FACTOR;
      }

      // update log quantile estimate 自适应中位数估计
      if (lmagn[i] > inst->lquantile[offset + i]) {
        inst->lquantile[offset + i] += QUANTILE * delta
                                       / (float)(inst->counter[s] + 1);
      } else {
        inst->lquantile[offset + i] -= ((float)1.0 - QUANTILE) * delta
                                       / (float)(inst->counter[s] + 1);
      }

      // update density estimate
      if (fabs(lmagn[i] - inst->lquantile[offset + i]) < WIDTH) {
        inst->density[offset + i] = ((float)inst->counter[s] * inst->density[offset
            + i] + (float)1.0 / ((float)2.0 * WIDTH)) / (float)(inst->counter[s] + 1);
      }



    }  // end loop over magnitude spectrum
    //200帧以上的处理方法 
    if (inst->counter[s] >= END_STARTUP_LONG) {
      inst->counter[s] = 0;
      if (inst->updates >= END_STARTUP_LONG) {
        for (i = 0; i < inst->magnLen; i++) {
          inst->quantile[i] = (float)exp(inst->lquantile[offset + i]);
        }
      }
    }

    inst->counter[s]++;
  }  // end loop over simultaneous estimates

  // Sequentially update the noise during startup
  
  //200帧以内的处理方法 每次更新
  if (inst->updates < END_STARTUP_LONG) {
    // Use the last "s" to get noise during startup that differ from zero.
    for (i = 0; i < inst->magnLen; i++) {
      inst->quantile[i] = (float)exp(inst->lquantile[offset + i]);
    }
  }

  for (i = 0; i < inst->magnLen; i++) {
    noise[i] = inst->quantile[i];
  }
}

代码实现过程

java 降噪算法 降噪计算_傅里叶变换_08

 

 前200帧时每次更新lq,之后当差距为67的counter中有一个满足200则更新(counter到达200后置零)。

前50帧的模型叠加

计算方法为将分位数估计的噪声与模型估计的噪声进行加权平均

代码如下:

if (inst->blockInd < END_STARTUP_SHORT) {
      // Estimate White noise 总能量平均值
      inst->whiteNoiseLevel += sumMagn / ((float)inst->magnLen) * inst->overdrive;
      // Estimate Pink noise parameters  
      tmpFloat1 = sum_log_i_square * ((float)(inst->magnLen - kStartBand));
      tmpFloat1 -= (sum_log_i * sum_log_i);
      tmpFloat2 = (sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn);
      tmpFloat3 = tmpFloat2 / tmpFloat1;
      // Constrain the estimated spectrum to be positive
      if (tmpFloat3 < 0.0f) {
        tmpFloat3 = 0.0f;
      }
      inst->pinkNoiseNumerator += tmpFloat3;
      tmpFloat2 = (sum_log_i * sum_log_magn);
      tmpFloat2 -= ((float)(inst->magnLen - kStartBand)) * sum_log_i_log_magn;
      tmpFloat3 = tmpFloat2 / tmpFloat1;
      // Constrain the pink noise power to be in the interval [0, 1];
      if (tmpFloat3 < 0.0f) {
        tmpFloat3 = 0.0f;
      }
      if (tmpFloat3 > 1.0f) {
        tmpFloat3 = 1.0f;
      }
      inst->pinkNoiseExp += tmpFloat3;

      // Calculate frequency independent parts of parametric noise estimate.
      if (inst->pinkNoiseExp == 0.0f) {
        // Use white noise estimate
        parametric_noise = inst->whiteNoiseLevel;
      } else {
        // Use pink noise estimate
        parametric_num = exp(inst->pinkNoiseNumerator / (float)(inst->blockInd + 1));
        parametric_num *= (float)(inst->blockInd + 1);
        parametric_exp = inst->pinkNoiseExp / (float)(inst->blockInd + 1);
        parametric_noise = parametric_num / pow((float)kStartBand, parametric_exp);
      }
      for (i = 0; i < inst->magnLen; i++) {
        // Estimate the background noise using the white and pink noise parameters
        if ((inst->pinkNoiseExp > 0.0f) && (i >= kStartBand)) {
          // Use pink noise estimate
          parametric_noise = parametric_num / pow((float)i, parametric_exp);
        }
        theFilterTmp[i] = (inst->initMagnEst[i] - inst->overdrive * parametric_noise);
        theFilterTmp[i] /= (inst->initMagnEst[i] + (float)0.0001);
        // Weight quantile noise with modeled noise
        noise[i] *= (inst->blockInd);
        tmpFloat2 = parametric_noise * (END_STARTUP_SHORT - inst->blockInd);
        noise[i] += (tmpFloat2 / (float)(inst->blockInd + 1));
        noise[i] /= END_STARTUP_SHORT;
      }
    }

 

代码推导过程如下

java 降噪算法 降噪计算_i++_09

上图与下图对应关系

num为pinkNoiseNumerator

exp为pinkNoiseExp

java 降噪算法 降噪计算_概率密度_10

 

 

 

 上图的noise是分位数估计值,p_noise是模型估计值生成逐步衰减的粉红噪声模型,前50帧估计中随着帧数的增大 分位数估计占比逐渐明显

 5)snr初步估计

通过上面计算的noise进行初步snr(sound noise ratio)估计

生成先验snr和后验snr

由于声音信号为线性关系,存在Y = N+S(Y:原始信号 N:噪声信号 S:语音信号) 

先验snr在应用过程中采用上一帧的先验与本次的后验平滑值

关系和表示如下

java 降噪算法 降噪计算_java 降噪算法_11

 代码如下

for (i = 0; i < inst->magnLen; i++) {
      // post snr
      snrLocPost[i] = (float)0.0;
      if (magn[i] > noise[i]) {
        snrLocPost[i] = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
      }
      // previous post snr
      // previous estimate: based on previous frame with gain filter
      previousEstimateStsa[i] = inst->magnPrev[i] / (inst->noisePrev[i] + (float)0.0001)
                                * (inst->smooth[i]);
      // DD estimate is sum of two terms: current estimate and previous estimate
      // directed decision update of snrPrior
      snrLocPrior[i] = DD_PR_SNR * previousEstimateStsa[i] + ((float)1.0 - DD_PR_SNR)* snrLocPost[i];
      // post and prior snr needed for step 2
    }  // end of loop over freqs

 

6)差异度计算

差异度为特征集中的其中一个

假设噪声频谱比较平坦,对应的差异度较低,用来衡量噪声的可能性

代码如下:

void WebRtcNs_ComputeSpectralDifference(NSinst_t* inst, float* magnIn) {
  // avgDiffNormMagn = var(magnIn) - cov(magnIn, magnAvgPause)^2 / var(magnAvgPause)
  int i;
  float avgPause, avgMagn, covMagnPause, varPause, varMagn, avgDiffNormMagn;

  avgPause = 0.0;
  avgMagn = inst->sumMagn;
  // compute average quantities
  for (i = 0; i < inst->magnLen; i++) {
    //conservative smooth noise spectrum from pause frames
    avgPause += inst->magnAvgPause[i];
  }
  avgPause = avgPause / ((float)inst->magnLen);
  avgMagn = avgMagn / ((float)inst->magnLen);

  covMagnPause = 0.0;
  varPause = 0.0;
  varMagn = 0.0;
  // compute variance and covariance quantities
  //covMagnPause 协方差 varPause varMagn 各自的方差
  for (i = 0; i < inst->magnLen; i++) {
    covMagnPause += (magnIn[i] - avgMagn) * (inst->magnAvgPause[i] - avgPause);
    varPause += (inst->magnAvgPause[i] - avgPause) * (inst->magnAvgPause[i] - avgPause);
    varMagn += (magnIn[i] - avgMagn) * (magnIn[i] - avgMagn);
  }
  covMagnPause = covMagnPause / ((float)inst->magnLen);
  varPause = varPause / ((float)inst->magnLen);
  varMagn = varMagn / ((float)inst->magnLen);
  // update of average magnitude spectrum
  inst->featureData[6] += inst->signalEnergy;
  //通过决定系数计算差异性 
  avgDiffNormMagn = varMagn - (covMagnPause * covMagnPause) / (varPause + (float)0.0001);
  // normalize and compute time-avg update of difference feature
  avgDiffNormMagn = (float)(avgDiffNormMagn / (inst->featureData[5] + (float)0.0001));
  inst->featureData[4] += SPECT_DIFF_TAVG * (avgDiffNormMagn - inst->featureData[4]);
}

代码对 magnAvgPause和MagIn进行了联合计算,MagIn为原始频谱 magnAvgPause为在声音概率较低的时候进行更新的参数

//语音概率较小 更新magnAvgPause
      if (probSpeech < PROB_RANGE) {
        inst->magnAvgPause[i] += GAMMA_PAUSE * (magn[i] - inst->magnAvgPause[i]);
      }

代码公式推导如下

java 降噪算法 降噪计算_i++_12

 

 

 代码中分别计算了两个变量的方差和协方差,从公式可以看出是决定系数的计算方法

决定系数介绍:在上面的线性回归过程中用来衡量数据的拟合程度,(类似的相关系数用来衡量非回归场景下的拟合程度)。

7)特征值筛选与权重计算

 过程如下:

java 降噪算法 降噪计算_java 降噪算法_13

 

 

 代码如下:

(flag=0)500帧内对特征值(lrt均值,平坦度,差异度)进行直方图分布计算(即将特征值(feature)除以某个特定的参数(bin_size),就能得到声音频谱的整个特征值在某个固定范围内的分布情况(x轴:i))

 i = feature/bin_size  ==>  feature = bin_size*i

(flag=1)达到500帧后对特征值进行收敛和筛选

处理过程就是首先对lrt特征进行起伏系数的计算以及值的限制

对平坦度和差异度两个系数提取最大出现次数对应的feature和feature数量,通过这个数据来判断这两个feature是否使用

lrt为必须使用的特征 

得到三个特征的权重

void WebRtcNs_FeatureParameterExtraction(NSinst_t* inst, int flag) {
  int i, useFeatureSpecFlat, useFeatureSpecDiff, numHistLrt;
  int maxPeak1, maxPeak2;
  int weightPeak1SpecFlat, weightPeak2SpecFlat, weightPeak1SpecDiff, weightPeak2SpecDiff;

  float binMid, featureSum;
  float posPeak1SpecFlat, posPeak2SpecFlat, posPeak1SpecDiff, posPeak2SpecDiff;
  float fluctLrt, avgHistLrt, avgSquareHistLrt, avgHistLrtCompl;

  //3 features: lrt, flatness, difference
  //lrt_feature = inst->featureData[3];
  //flat_feature = inst->featureData[0];
  //diff_feature = inst->featureData[4];

  //update histograms
  if (flag == 0) {
    // LRT
    if ((inst->featureData[3] < HIST_PAR_EST * inst->featureExtractionParams.binSizeLrt)
        && (inst->featureData[3] >= 0.0)) {
      i = (int)(inst->featureData[3] / inst->featureExtractionParams.binSizeLrt);
      inst->histLrt[i]++;
    }
    // Spectral flatness
    if ((inst->featureData[0] < HIST_PAR_EST
         * inst->featureExtractionParams.binSizeSpecFlat)
        && (inst->featureData[0] >= 0.0)) {
      i = (int)(inst->featureData[0] / inst->featureExtractionParams.binSizeSpecFlat);
      inst->histSpecFlat[i]++;
    }
    // Spectral difference
    if ((inst->featureData[4] < HIST_PAR_EST
         * inst->featureExtractionParams.binSizeSpecDiff)
        && (inst->featureData[4] >= 0.0)) {
      i = (int)(inst->featureData[4] / inst->featureExtractionParams.binSizeSpecDiff);
      inst->histSpecDiff[i]++;
    }
  }

  // extract parameters for speech/noise probability
  if (flag == 1) {
    //lrt feature: compute the average over inst->featureExtractionParams.rangeAvgHistLrt
    avgHistLrt = 0.0;
    avgHistLrtCompl = 0.0;
    avgSquareHistLrt = 0.0;
    numHistLrt = 0;
    for (i = 0; i < HIST_PAR_EST; i++) {
      //由feature = i*bin_size  得出binMid=feature+0.5*0.1 即binMid约等于feature原值 hisLrt存储对应feature数量

      binMid = ((float)i + (float)0.5) * inst->featureExtractionParams.binSizeLrt;
      //即feature(lrt)<1的情况 binmid < 10(rangeAvfHistLrt:10)
if (binMid <= inst->featureExtractionParams.rangeAvgHistLrt) {        avgHistLrt += inst->histLrt[i] * binMid;
numHistLrt += inst->histLrt[i];
      }
      avgSquareHistLrt += inst->histLrt[i] * binMid * binMid;
      avgHistLrtCompl += inst->histLrt[i] * binMid;
    }
    //类似lrt<1的情况下所有特征平均值 num存储特征总数量
    if (numHistLrt > 0) {
      avgHistLrt = avgHistLrt / ((float)numHistLrt);
    }
    //所有lrt下特征的平均值 此处分母用500
    avgHistLrtCompl = avgHistLrtCompl / ((float)inst->modelUpdatePars[1]);
    //特征平方的平均值
    avgSquareHistLrt = avgSquareHistLrt / ((float)inst->modelUpdatePars[1]);
    //起伏特征:所有特征平方平均值-特征小于1的情况平均值*所有特征平均值
    fluctLrt = avgSquareHistLrt - avgHistLrt * avgHistLrtCompl;
    // get threshold for lrt feature: thresFluctLrt  0.05
     //接下来就是系数的值域限制

    if (fluctLrt < inst->featureExtractionParams.thresFluctLrt) {
      //very low fluct, so likely noise 起伏系数?
      inst->priorModelPars[0] = inst->featureExtractionParams.maxLrt;
    } else {
      inst->priorModelPars[0] = inst->featureExtractionParams.factor1ModelPars
                                * avgHistLrt;
      // check if value is within min/max range
      if (inst->priorModelPars[0] < inst->featureExtractionParams.minLrt) {
        inst->priorModelPars[0] = inst->featureExtractionParams.minLrt;
      }
      if (inst->priorModelPars[0] > inst->featureExtractionParams.maxLrt) {
        inst->priorModelPars[0] = inst->featureExtractionParams.maxLrt;
      }
    }
    // done with lrt feature

    //
    // for spectral flatness and spectral difference: compute the main peaks of histogram
    maxPeak1 = 0;
    maxPeak2 = 0;
    posPeak1SpecFlat = 0.0;
    posPeak2SpecFlat = 0.0;
    weightPeak1SpecFlat = 0;
    weightPeak2SpecFlat = 0;

    // peaks for flatness 平整度最大值和次大值
    for (i = 0; i < HIST_PAR_EST; i++) {
      binMid = ((float)i + (float)0.5) * inst->featureExtractionParams.binSizeSpecFlat;
      if (inst->histSpecFlat[i] > maxPeak1) {
        // Found new "first" peak
        maxPeak2 = maxPeak1;
        weightPeak2SpecFlat = weightPeak1SpecFlat;
        posPeak2SpecFlat = posPeak1SpecFlat;

        maxPeak1 = inst->histSpecFlat[i];
        weightPeak1SpecFlat = inst->histSpecFlat[i];
        posPeak1SpecFlat = binMid;
      } else if (inst->histSpecFlat[i] > maxPeak2) {
        // Found new "second" peak
        maxPeak2 = inst->histSpecFlat[i];
        weightPeak2SpecFlat = inst->histSpecFlat[i];
        posPeak2SpecFlat = binMid;
      }
    }

    //compute two peaks for spectral difference 差异度最大值和次大值
    maxPeak1 = 0;
    maxPeak2 = 0;
    posPeak1SpecDiff = 0.0;
    posPeak2SpecDiff = 0.0;
    weightPeak1SpecDiff = 0;
    weightPeak2SpecDiff = 0;
    // peaks for spectral difference
    for (i = 0; i < HIST_PAR_EST; i++) {
      binMid = ((float)i + (float)0.5) * inst->featureExtractionParams.binSizeSpecDiff;
      if (inst->histSpecDiff[i] > maxPeak1) {
        // Found new "first" peak
        maxPeak2 = maxPeak1;
        weightPeak2SpecDiff = weightPeak1SpecDiff;
        posPeak2SpecDiff = posPeak1SpecDiff;

        maxPeak1 = inst->histSpecDiff[i];
        weightPeak1SpecDiff = inst->histSpecDiff[i];
        posPeak1SpecDiff = binMid;
      } else if (inst->histSpecDiff[i] > maxPeak2) {
        // Found new "second" peak
        maxPeak2 = inst->histSpecDiff[i];
        weightPeak2SpecDiff = inst->histSpecDiff[i];
        posPeak2SpecDiff = binMid;
      }
    }

    // for spectrum flatness feature
    useFeatureSpecFlat = 1;
    // merge the two peaks if they are close
    //inst->featureExtractionParams.limitPeakSpacingSpecFlat = 0.1
    //  inst->featureExtractionParams.limitPeakWeightsSpecFlat = (float)0.5
    //平坦度 最大次大满足需求后叠加取均值 以及判断是否使用
    if ((fabs(posPeak2SpecFlat - posPeak1SpecFlat)
         < inst->featureExtractionParams.limitPeakSpacingSpecFlat)
        && (weightPeak2SpecFlat
            > inst->featureExtractionParams.limitPeakWeightsSpecFlat
            * weightPeak1SpecFlat)) {
      weightPeak1SpecFlat += weightPeak2SpecFlat;
      posPeak1SpecFlat = (float)0.5 * (posPeak1SpecFlat + posPeak2SpecFlat);
    }
    //reject if weight of peaks is not large enough, or peak value too small
    if (weightPeak1SpecFlat < inst->featureExtractionParams.thresWeightSpecFlat
        || posPeak1SpecFlat < inst->featureExtractionParams.thresPosSpecFlat) {
      useFeatureSpecFlat = 0;
    }
    // if selected, get the threshold
    if (useFeatureSpecFlat == 1) {
      // compute the threshold
      inst->priorModelPars[1] = inst->featureExtractionParams.factor2ModelPars
                                * posPeak1SpecFlat;
      //check if value is within min/max range 限制大小在:0.1-0.95
      if (inst->priorModelPars[1] < inst->featureExtractionParams.minSpecFlat) {
        inst->priorModelPars[1] = inst->featureExtractionParams.minSpecFlat;
      }
      if (inst->priorModelPars[1] > inst->featureExtractionParams.maxSpecFlat) {
        inst->priorModelPars[1] = inst->featureExtractionParams.maxSpecFlat;
      }
    }
    // done with flatness feature

    // for template feature
    useFeatureSpecDiff = 1;
    // merge the two peaks if they are close
    //差异度 取极大次大值合并 判断是否使用
    if ((fabs(posPeak2SpecDiff - posPeak1SpecDiff)
         < inst->featureExtractionParams.limitPeakSpacingSpecDiff)
        && (weightPeak2SpecDiff
            > inst->featureExtractionParams.limitPeakWeightsSpecDiff
            * weightPeak1SpecDiff)) {
      weightPeak1SpecDiff += weightPeak2SpecDiff;
      posPeak1SpecDiff = (float)0.5 * (posPeak1SpecDiff + posPeak2SpecDiff);
    }
    // get the threshold value
    inst->priorModelPars[3] = inst->featureExtractionParams.factor1ModelPars
                              * posPeak1SpecDiff;
    //reject if weight of peaks is not large enough
    if (weightPeak1SpecDiff < inst->featureExtractionParams.thresWeightSpecDiff) {
      useFeatureSpecDiff = 0;
    }
    //check if value is within min/max range
    if (inst->priorModelPars[3] < inst->featureExtractionParams.minSpecDiff) {
      inst->priorModelPars[3] = inst->featureExtractionParams.minSpecDiff;
    }
    if (inst->priorModelPars[3] > inst->featureExtractionParams.maxSpecDiff) {
      inst->priorModelPars[3] = inst->featureExtractionParams.maxSpecDiff;
    }
    // done with spectral difference feature

    // don't use template feature if fluctuation of lrt feature is very low:
    //  most likely just noise state
    if (fluctLrt < inst->featureExtractionParams.thresFluctLrt) {
      useFeatureSpecDiff = 0;
    }

    // select the weights between the features
    // inst->priorModelPars[4] is weight for lrt: always selected
    // inst->priorModelPars[5] is weight for spectral flatness
    // inst->priorModelPars[6] is weight for spectral difference
    featureSum = (float)(1 + useFeatureSpecFlat + useFeatureSpecDiff);
    inst->priorModelPars[4] = (float)1.0 / featureSum;
    inst->priorModelPars[5] = ((float)useFeatureSpecFlat) / featureSum;
    inst->priorModelPars[6] = ((float)useFeatureSpecDiff) / featureSum;

    // set hists to zero for next update
    if (inst->modelUpdatePars[0] >= 1) {
      for (i = 0; i < HIST_PAR_EST; i++) {
        inst->histLrt[i] = 0;
        inst->histSpecFlat[i] = 0;
        inst->histSpecDiff[i] = 0;
      }
    }
  }  // end of flag == 1
}

得到以下参数

java 降噪算法 降噪计算_i++_14

 

 

 8)语音/噪音概率估计

主要是计算在带噪语音和特征条件下是语音的概率为

P(H1 | YF) (H1:语音状态 Y:原始信号 F:特征集)

利用的原理如下:

1)贝叶斯公式:假设A和B为独立分布的时间,存在P(AB)=p(A|B)*P(B) (同时发生AB的概率等于B的发生概率*B发生条件下A发生的概率)在这里假设噪音跟语音是独立分布的两种事件

2)语音的线性关系:设定H0为噪音 H1为语音 Y为原始信号 存在 P(H0|YF) + P(H1|YF) = 1  , P(H0|Y) + P(H1|Y) =1

 推导过程如下

java 降噪算法 降噪计算_概率密度_15

 

 

P(H0|F) = 1-P(H1|F)

根据推导出的公式得出求出以下两个值 就可以计算出P(H1|YF) 

java 降噪算法 降噪计算_概率密度_16

 

 

 简化为下面的公式

java 降噪算法 降噪计算_傅里叶变换_17

 

 

求解似然比系数采用联合高斯概率密度分布的操作

高斯概率密度介绍如下:

java 降噪算法 降噪计算_傅里叶变换_18

 

 

这里假设噪音和语音符合均值为0的概率密度分布

java 降噪算法 降噪计算_java 降噪算法_19

 

 

 对应似然比计算如下

 

java 降噪算法 降噪计算_傅里叶变换_20

 

 

 

代码如下:

void WebRtcNs_SpeechNoiseProb(NSinst_t* inst, float* probSpeechFinal, float* snrLocPrior,
                              float* snrLocPost) {
  int i, sgnMap;
  float invLrt, gainPrior, indPrior;
  float logLrtTimeAvgKsum, besselTmp;
  float indicator0, indicator1, indicator2;
  float tmpFloat1, tmpFloat2;
  float weightIndPrior0, weightIndPrior1, weightIndPrior2;
  float threshPrior0, threshPrior1, threshPrior2;
  float widthPrior, widthPrior0, widthPrior1, widthPrior2;

  widthPrior0 = WIDTH_PR_MAP;
  widthPrior1 = (float)2.0 * WIDTH_PR_MAP; //width for pause region:
  // lower range, so increase width in tanh map
  widthPrior2 = (float)2.0 * WIDTH_PR_MAP; //for spectral-difference measure

  //threshold parameters for features
  threshPrior0 = inst->priorModelPars[0];
  threshPrior1 = inst->priorModelPars[1];
  threshPrior2 = inst->priorModelPars[3];

  //sign for flatness feature
  sgnMap = (int)(inst->priorModelPars[2]);

  //weight parameters for features
  weightIndPrior0 = inst->priorModelPars[4];
  weightIndPrior1 = inst->priorModelPars[5];
  weightIndPrior2 = inst->priorModelPars[6];

  // compute feature based on average LR factor
  // this is the average over all frequencies of the smooth log lrt
  //通过似然比与高斯密度概率函数求解lrt均值
  logLrtTimeAvgKsum = 0.0;
  for (i = 0; i < inst->magnLen; i++) {
    tmpFloat1 = (float)1.0 + (float)2.0 * snrLocPrior[i];
    tmpFloat2 = (float)2.0 * snrLocPrior[i] / (tmpFloat1 + (float)0.0001);
    besselTmp = (snrLocPost[i] + (float)1.0) * tmpFloat2;
    inst->logLrtTimeAvg[i] += LRT_TAVG * (besselTmp - (float)log(tmpFloat1)- inst->logLrtTimeAvg[i]);
    logLrtTimeAvgKsum += inst->logLrtTimeAvg[i];
  }
  //以上计算得到极大似然比
  //取极大似然比的平均值
  logLrtTimeAvgKsum = (float)logLrtTimeAvgKsum / (inst->magnLen);
  inst->featureData[3] = logLrtTimeAvgKsum;

接下来求特征条件下的语音概率

用到了上面特征筛选中计算出的权重与特征值

代码如下

这里采用了取反正切sigmod函数用来限制feature的值域(反正切的值域为[-1,1]) 

方法如下:

java 降噪算法 降噪计算_i++_21

 

 代码如下

//以下操作对三个特征值进行sigmod函数变换 将值控制在同一范围内 
  // sigmod函数采用tanh(单调增 值域【-1,1】 代码中控制在[-0.5,0.5]中间)
  // average lrt feature
  widthPrior = widthPrior0;
  //use larger width in tanh map for pause regions
  if (logLrtTimeAvgKsum < threshPrior0) {
    widthPrior = widthPrior1;
  }
  // compute indicator function: sigmoid map
  indicator0 = (float)0.5 * ((float)tanh(widthPrior *
      (logLrtTimeAvgKsum - threshPrior0)) + (float)1.0);

  //spectral flatness feature
  tmpFloat1 = inst->featureData[0];
  widthPrior = widthPrior0;
  //use larger width in tanh map for pause regions 使用flatnesss 
  if (sgnMap == 1 && (tmpFloat1 > threshPrior1)) {
    widthPrior = widthPrior1;
  }
  //feature0>feature1 不使用flatness
  if (sgnMap == -1 && (tmpFloat1 < threshPrior1)) {
    widthPrior = widthPrior1;
  }
  // compute indicator function: sigmoid map
  indicator1 = (float)0.5 * ((float)tanh((float)sgnMap * 
      widthPrior * (threshPrior1 - tmpFloat1)) + (float)1.0);

  //for template spectrum-difference
  tmpFloat1 = inst->featureData[4];
  widthPrior = widthPrior0;
  //use larger width in tanh map for pause regions
  if (tmpFloat1 < threshPrior2) {
    widthPrior = widthPrior2;
  }
  // compute indicator function: sigmoid map
  indicator2 = (float)0.5 * ((float)tanh(widthPrior * (tmpFloat1 - threshPrior2))
                             + (float)1.0);

  //combine the indicator function with the feature weights
  indPrior = weightIndPrior0 * indicator0 + weightIndPrior1 * indicator1 + weightIndPrior2
             * indicator2;
  // done with computing indicator function

  //compute the prior probability
  inst->priorSpeechProb += PRIOR_UPDATE * (indPrior - inst->priorSpeechProb);

接下来取计算好的两个概率计算最终的语音概率 得到特征条件以及原始信号条件下的语音概率

java 降噪算法 降噪计算_java 降噪算法_22

//final speech probability: combine prior model with LR factor:
  gainPrior = ((float)1.0 - inst->priorSpeechProb) / (inst->priorSpeechProb + (float)0.0001);
  for (i = 0; i < inst->magnLen; i++) {
    invLrt = (float)exp(-inst->logLrtTimeAvg[i]);
    invLrt = (float)gainPrior * invLrt;
    probSpeechFinal[i] = (float)1.0 / ((float)1.0 + invLrt);
  }

9)根据语音概率的结果更新之前估计的噪音(反馈)

由P(H0|YF) = 1-P(H1|YF)得出

代码如下:计算类似上面噪声初始化估计的过程

//更新完语音概率后 更新noise
    gammaNoiseTmp = NOISE_UPDATE;
    for (i = 0; i < inst->magnLen; i++) {
      probSpeech = probSpeechFinal[i];
      probNonSpeech = (float)1.0 - probSpeech;
      // temporary noise update:
      // use it for speech frames if update value is less than previous
      noiseUpdateTmp = gammaNoiseTmp * inst->noisePrev[i] + ((float)1.0 - gammaNoiseTmp)
                       * (probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
      //
      // time-constant based on speech/noise state
      gammaNoiseOld = gammaNoiseTmp;
      gammaNoiseTmp = NOISE_UPDATE;
      // increase gamma (i.e., less noise update) for frame likely to be speech
      //语音概率较大 减少本帧噪音的占比
      if (probSpeech > PROB_RANGE) {
        gammaNoiseTmp = SPEECH_UPDATE;
      }
      // conservative noise update
      //语音概率较小 更新magnAvgPause
      if (probSpeech < PROB_RANGE) {
        inst->magnAvgPause[i] += GAMMA_PAUSE * (magn[i] - inst->magnAvgPause[i]);
      }
      // noise update 
      if (gammaNoiseTmp == gammaNoiseOld) {
        noise[i] = noiseUpdateTmp;
      } else {
        noise[i] = gammaNoiseTmp * inst->noisePrev[i] + ((float)1.0 - gammaNoiseTmp)
                   * (probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
        // allow for noise update downwards:
        //  if noise update decreases the noise, it is safe, so allow it to happen
        if (noiseUpdateTmp < noise[i]) {
          noise[i] = noiseUpdateTmp;
        }
      }
    }  // end of freq loop
    // done with step 2: noise update

    //
    // STEP 3: compute dd update of prior snr and post snr based on new noise estimate
    //filter:比重
    for (i = 0; i < inst->magnLen; i++) {
      // post and prior snr
      currentEstimateStsa = (float)0.0;
      if (magn[i] > noise[i]) {
        currentEstimateStsa = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
      }
      // DD estimate is sume of two terms: current estimate and previous estimate
      // directed decision update of snrPrior
      snrPrior = DD_PR_SNR * previousEstimateStsa[i] + ((float)1.0 - DD_PR_SNR)
                 * currentEstimateStsa;
      // gain filter
      tmpFloat1 = inst->overdrive + snrPrior;
      tmpFloat2 = (float)snrPrior / tmpFloat1;
      theFilter[i] = (float)tmpFloat2;
    }  // end of loop over freqs
    // done with step3

10)维纳滤波

维纳滤波介绍如下:

java 降噪算法 降噪计算_傅里叶变换_23

 

 由于上面已经计算出Pri即先验概率的值 所以可以直接用来求最终的结果

期望信号 = 原始信号*维纳系数

维纳系数计算的代码如下: override设置为1

for (i = 0; i < inst->magnLen; i++) {
      // post and prior snr
      currentEstimateStsa = (float)0.0;
      if (magn[i] > noise[i]) {
        currentEstimateStsa = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
      }
      // DD estimate is sume of two terms: current estimate and previous estimate
      // directed decision update of snrPrior
      snrPrior = DD_PR_SNR * previousEstimateStsa[i] + ((float)1.0 - DD_PR_SNR)
                 * currentEstimateStsa;
      // gain filter
      tmpFloat1 = inst->overdrive + snrPrior;
      tmpFloat2 = (float)snrPrior / tmpFloat1;
      theFilter[i] = (float)tmpFloat2;
    }  // end of loop over freqs
    // done with step3

通过维纳滤波系数以及原始信号计算语音信号 代码如下:

for (i = 0; i < inst->magnLen; i++) {
      // flooring bottom
      if (theFilter[i] < inst->denoiseBound) {
        theFilter[i] = inst->denoiseBound;
      }
      // flooring top
      if (theFilter[i] > (float)1.0) {
        theFilter[i] = 1.0;
      }
      if (inst->blockInd < END_STARTUP_SHORT) {
        // flooring bottom
        if (theFilterTmp[i] < inst->denoiseBound) {
          theFilterTmp[i] = inst->denoiseBound;
        }
        // flooring top
        if (theFilterTmp[i] > (float)1.0) {
          theFilterTmp[i] = 1.0;
        }
        // Weight the two suppression filters
        theFilter[i] *= (inst->blockInd);
        theFilterTmp[i] *= (END_STARTUP_SHORT - inst->blockInd);
        theFilter[i] += theFilterTmp[i];
        theFilter[i] /= (END_STARTUP_SHORT);
      }
      // smoothing
#ifdef PROCESS_FLOW_0
      inst->smooth[i] *= SMOOTH; // value set to 0.7 in define.h file
      inst->smooth[i] += ((float)1.0 - SMOOTH) * theFilter[i];
#else
      inst->smooth[i] = theFilter[i];
#endif
      real[i] *= inst->smooth[i];
      imag[i] *= inst->smooth[i];
    }

将计算好的数据存储到prev中用于下次的计算迭代平滑

将数据进行一些收敛判断,进行反傅里叶变换,就得出最终的语音信号

for (i = 0; i < inst->magnLen; i++) {
      inst->noisePrev[i] = noise[i];
      inst->magnPrev[i] = magn[i];
    }
    // back to time domain
    winData[0] = real[0];
    winData[1] = real[inst->magnLen - 1];
    for (i = 1; i < inst->magnLen - 1; i++) {
      winData[2 * i] = real[i];
      winData[2 * i + 1] = imag[i];
    }
    //反傅里叶变换 幅度谱生成原始数据
    WebRtc_rdft(inst->anaLen, -1, winData, inst->ip, inst->wfft);

 

参考:书籍《实时语音处理实践指南》