• http://spark.apache.org/releases/spark-release-3-0-0.html
  • Python is now the most widely used language on Spark. PySpark has more than 5 million monthly downloads on PyPI, the Python Package Index.
  • 记住如果安装特定的版本需要使用指定版本,pip install pyspark2.4.5
  • 本地安装使用pip install pyspark 默认安装最新版

PySpark Vs Spark

Python作为Spark的主流开发语言

PySpark安装

1-如何安装PySpark?

  • 首先安装anconda,基于anaconda安装pyspark
  • anaconda是数据科学环境,如果安装了anaconda不需要安装python了,已经集成了180多个数据科学工具
  • 注意:anaconda类似于cdh,可以解决安装包的版本依赖的问题

Linux的Anaconda安装

2-如何安装anconda?

  • 去anaconda的官网下载linux系统需要文件 Anaconda3-2021.05-Linux-x86_64.sh
  • 上传到linux中,执行安装sh Anaconda3-2021.05-Linux-x86_64.sh或bash Anaconda3-2021.05-Linux-x86_64.sh
  • 直接Enter下一步到底,完成
  • 配置环境变量,参考课件

3-Anaconda有很多软件

  • IPython 交互式Python,比原生的Python在代码补全,关键词高亮方面都有明显优势
  • jupyter notebook:以Web应用启动的交互式编写代码交互式平台(web平台)
  • 180多个工具包
  • conda和pip什么区别?
  • conda和pip都是安装python package
  • conda list可以展示出package的版本信息
  • conda 可以创建独立的沙箱环境,避免版本冲突,能够做到环境独立
  • conda create -n pyspark_env python==3.8.8

4-Anaconda中可以利用conda构建虚拟环境

  • 这里提供了多种方式安装pyspark
  • (掌握)第一种:直接安装 pip install pyspark
  • (掌握)第二种:使用虚拟环境安装pyspark_env中安装,pip install pyspark
  • 第三种:在PyPi上下载下来对应包执行安装

5-如何查看conda创建的虚拟环境?

  • conda env list
  • conda create -n pyspark_env python==3.8.8
  • pip install pyspark

PySpark安装

  • 1-使用base的环境安装
  • 2-使用pyspark_env方式安装
  • 查看启动结果
  • 简单的代码演示
  • 在虚拟环境下的补充
  • webui
  • 注意:
  • 1-1个Spark的Applicaition下面有很多Job
  • 2-1个Job下面有很多Stage

Jupyter环境设置

监控页面

  • 4040的端口

运行圆周率

  • 回顾Hadoop中可以使用
  • hadoop jar xxxx.jar 100
  • yarn jar xxxx.jar 1000
  • 跑的mr的任务
  • Spark中也有对应的提交任务的代码
  • spark-submit 提交圆周率的计算代码 */examples/src/main/python/pi.py*
  • 提交的命令:

bin/spark-submit --master local[2] /export/server/spark/examples/src/main/python/pi.py 10
或者

# 基于蒙特卡洛方法求解的Pi,需要参数10,或100代表的次数bin/spark-submit \ --master local[2] \ /export/server/spark/examples/src/main/python/pi.py \ 10

  • 蒙特卡洛方法求解PI
  • 采用的扔飞镖的方法,在极限的情况下,可以用落入到圆内的次数除以落入正方形内的次数
  • hadoop jar /export/server/hadoop-3.3.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.0.jar pi 10 10
  • hadoop提交任务中使用 第一个10代表是map任务,第二10代表每个map任务投掷的次数
  • spark-submit的提交的参数10的含义是投掷的次数
  • 简单的py代码

def pi(times): # times的意思是落入到正方形的次数
x_time = 0
for i in range(times):

有多少落入到圆内

x = random.random()
y = random.random()
if x * x + y * y <= 1:
x_time += 1
return x_time / times * 4.0
print(pi(10000000))#3.1410412

环境搭建-Standalone

  • 完成了Spark的local环境搭建
  • 完成了Spark的PySpark的local环境搭建
  • 基于PySpark完成spark-submit的任务提交

Standalone 架构

  • 如果修改配置,如何修改?
  • 1-设定谁是主节点,谁是从节点
  • node1是主节点,node1,node2,node3是从节点
  • 2-需要在配置文件中声明,
  • 那个节点是主节点,主节点的主机名和端口号(通信)
  • 那个节点是从节点,从节点的主机名和端口号
  • 3-现象:进入到spark-shell中或pyspark中,会开启4040的端口webui展示,但是一旦交互式命令行退出了,wenui无法访问了,需要具备Spark的历史日志服务器可以查看历史提交的任务

角色分析

Master角色,管理节点, 启动一个名为Master的进程, *Master进程有且仅有1个*(HA模式除外)

Worker角色, 干活节点,启动一个名为 Worker的进程., Worker进程****最少1个, 最多不限制****

Master进程负责资源的管理, 并在有程序运行时, 为当前程序创建管理者Driver

Driver:驱动器,使用SparkCOntext申请资源的称之为Driver,告诉任务需要多少cpu或内存

Worker进程负责干活, 向Master汇报状态, 并听从程序Driver的安排,创建Executor干活

在Worker中有Executor,Executor真正执行干活

集群规划

谁是Master 谁是Worker

node1:master/worker

node2:slave/worker

node3:slave/worker

为每台机器安装Python3

安装过程

  • 1-配置文件概述
  • spark-env.sh 配置主节点和从节点和历史日志服务器
  • workers 从节点列表
  • spark-default.conf spark框架启动默认的配置,这里可以将历史日志服务器是否开启,是否有压缩等写入该配置文件
  • 2-安装过程
  • 2-1 修改workers的从节点配置文件
  • 2-2 修改spark-env.sh配置文件
  • hdfs dfs -mkdir -p /sparklog/
  • 2-3 修改spark-default.conf配置文件
  • 2-4 配置日志显示级别(省略)

测试

  • WebUi
  • (1)Spark-shell
  • bin/spark-shell --master spark://node1:7077
  • (2)pyspark
  • 前提:需要在三台机器上都需要安装Anaconda,并且安装PySpark3.1.2的包
  • 步骤:
  • 如果使用crt上传文件一般使用rz命令,yum install -y lrzsz
  • 1-在3台虚拟机上准备anconda
  • 2-安装anaconda,sh anaconda.sh
  • 3-安装pyspark,这里注意环境变量不一定配置,直接进去文件夹也可以
  • 4-测试
  • 调用:bin/pyspark --master spark://node1:7077