KEYS
KEYS pattern
查找所有符合给定模式 pattern 的 key
KEYS * 匹配数据库中所有 key
KEYS h?llo 匹配 hello , hallo 和 hxllo
KEYS h*llo 匹配 hllo 和 heeeeello
KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hillo
特殊符号用 \
KEYS 的速度非常快,但在一个大的数据库中使用它仍然可能造成性能问题,如果你需要从一个数据集中查找特定的 key ,你最好还是用 Redis 的集合结构(set)来代替。
可用版本:
>= 1.0.0
时间复杂度:
O(N), N 为数据库中 key
返回值:
符合给定模式的 key
redis> MSET one 1 two 2 three 3 four 4 # 一次设置 4 个 key
OK
redis> KEYS *o*
1) "four"
2) "two"
3) "one"
redis> KEYS t??
1) "two"
redis> KEYS t[w]*
1) "two"
redis> KEYS * # 匹配数据库内所有 key
1) "four"
2) "three"
3) "two"
4) "one"
MIGRATE
MIGRATE host port key destination-db timeout [COPY] [REPLACE]
将 key 原子性地从当前实例传送到目标实例的指定数据库上,一旦传送成功, key 保证会出现在目标实例上,而当前实例上的 key 会被删除。
这个命令是一个原子操作,它在执行的时候会阻塞进行迁移的两个实例,直到以下任意结果发生:迁移成功,迁移失败,等到超时。
命令的内部实现是这样的:它在当前实例对给定 key 执行 DUMP 命令 ,将它序列化,然后传送到目标实例,目标实例再使用 RESTORE 对数据进行反序列化,并将反序列化所得的数据添加到数据库中;当前实例就像目标实例的客户端那样,只要看到 RESTORE 命令返回 OK ,它就会调用 DEL 删除自己数据库上的 key 。
timeout 参数以毫秒为格式,指定当前实例和目标实例进行沟通的最大间隔时间。这说明操作并不一定要在 timeout 毫秒内完成,只是说数据传送的时间不能超过这个 timeout 数。
MIGRATE 命令需要在给定的时间规定内完成 IO 操作。如果在传送数据时发生 IO 错误,或者达到了超时时间,那么命令会停止执行,并返回一个特殊的错误: IOERR 。
当 IOERR 出现时,有以下两种可能:
key 可能存在于两个实例
key 可能只存在于当前实例
唯一不可能发生的情况就是丢失 key ,因此,如果一个客户端执行 MIGRATE 命令,并且不幸遇上 IOERR 错误,那么这个客户端唯一要做的就是检查自己数据库上的 key 是否已经被正确地删除。
如果有其他错误发生,那么 MIGRATE 保证 key 只会出现在当前实例中。(当然,目标实例的给定数据库上可能有和 key 同名的键,不过这和 MIGRATE 命令没有关系)。
可选项:
- COPY :不移除源实例上的 key
- REPLACE :替换目标实例上已存在的 key
可用版本:
>= 2.6.0
时间复杂度:
这个命令在源实例上实际执行 DUMP 命令和 DEL 命令,在目标实例执行 RESTORE 命令,查看以上命令的文档可以看到详细的复杂度说明。
key
返回值:
迁移成功时返回 OK
示例
先启动两个 Redis 实例,一个使用默认的 6379 端口,一个使用 7777 端口。
$ ./redis-server &
[1] 3557
...
$ ./redis-server --port 7777 &
[2] 3560
...
然后用客户端连上 6379 端口的实例,设置一个键,然后将它迁移到 7777 端口的实例上:
$ ./redis-cli
redis 127.0.0.1:6379> flushdb
OK
redis 127.0.0.1:6379> SET greeting "Hello from 6379 instance"
OK
redis 127.0.0.1:6379> MIGRATE 127.0.0.1 7777 greeting 0 1000
OK
redis 127.0.0.1:6379> EXISTS greeting # 迁移成功后 key 被删除
(integer) 0
使用另一个客户端,查看 7777 端口上的实例:
$ ./redis-cli -p 7777
redis 127.0.0.1:7777> GET greeting
"Hello from 6379 instance"
MOVE
MOVE key db
将当前数据库的 key 移动到给定的数据库 db 当中。
如果当前数据库(源数据库)和给定数据库(目标数据库)有相同名字的给定 key ,或者 key 不存在于当前数据库,那么 MOVE 没有任何效果。
因此,也可以利用这一特性,将 MOVE 当作锁(locking)原语(primitive)。
可用版本:
>= 1.0.0
时间复杂度:
O(1)
返回值:
移动成功返回 1 ,失败则返回 0
# key 存在于当前数据库
redis> SELECT 0 # redis默认使用数据库 0,为了清晰起见,这里再显式指定一次。
OK
redis> SET song "secret base - Zone"
OK
redis> MOVE song 1 # 将 song 移动到数据库 1
(integer) 1
redis> EXISTS song # song 已经被移走
(integer) 0
redis> SELECT 1 # 使用数据库 1
OK
redis:1> EXISTS song # 证实 song 被移到了数据库 1 (注意命令提示符变成了"redis:1",表明正在使用数据库 1)
(integer) 1
# 当 key 不存在的时候
redis:1> EXISTS fake_key
(integer) 0
redis:1> MOVE fake_key 0 # 试图从数据库 1 移动一个不存在的 key 到数据库 0,失败
(integer) 0
redis:1> select 0 # 使用数据库0
OK
redis> EXISTS fake_key # 证实 fake_key 不存在
(integer) 0
# 当源数据库和目标数据库有相同的 key 时
redis> SELECT 0 # 使用数据库0
OK
redis> SET favorite_fruit "banana"
OK
redis> SELECT 1 # 使用数据库1
OK
redis:1> SET favorite_fruit "apple"
OK
redis:1> SELECT 0 # 使用数据库0,并试图将 favorite_fruit 移动到数据库 1
OK
redis> MOVE favorite_fruit 1 # 因为两个数据库有相同的 key,MOVE 失败
(integer) 0
redis> GET favorite_fruit # 数据库 0 的 favorite_fruit 没变
"banana"
redis> SELECT 1
OK
redis:1> GET favorite_fruit # 数据库 1 的 favorite_fruit 也是
"apple"
OBJECT
OBJECT subcommand [arguments [arguments]]
OBJECT 命令允许从内部察看给定 key 的 Redis 对象。
它通常用在除错(debugging)或者了解为了节省空间而对 key 使用特殊编码的情况。
当将Redis用作缓存程序时,你也可以通过 OBJECT 命令中的信息,决定 key 的驱逐策略(eviction policies)。
OBJECT 命令有多个子命令:
- OBJECT REFCOUNT <key> 返回给定 key
- OBJECT ENCODING <key> 返回给定 key
- OBJECT IDLETIME <key> 返回给定 key
对象可以以多种方式编码:
- 字符串可以被编码为 raw (一般字符串)或 int
- 列表可以被编码为 ziplist 或 linkedlist 。 ziplist
- 集合可以被编码为 intset 或者 hashtable 。 intset
- 哈希表可以编码为 zipmap 或者 hashtable 。 zipmap
- 有序集合可以被编码为 ziplist 或者 skiplist 格式。 ziplist 用于表示小的有序集合,而 skiplist
假如你做了什么让 Redis 没办法再使用节省空间的编码时(比如将一个只有 1 个元素的集合扩展为一个有 100 万个元素的集合),特殊编码类型(specially encoded types)会自动转换成通用类型(general type)。
可用版本:
>= 2.2.3
时间复杂度:
O(1)
返回值:
REFCOUNT 和 IDLETIME
ENCODING
redis> SET game "COD" # 设置一个字符串
OK
redis> OBJECT REFCOUNT game # 只有一个引用
(integer) 1
redis> OBJECT IDLETIME game # 等待一阵。。。然后查看空转时间
(integer) 90
redis> GET game # 提取game, 让它处于活跃(active)状态
"COD"
redis> OBJECT IDLETIME game # 不再处于空转
(integer) 0
redis> OBJECT ENCODING game # 字符串的编码方式
"raw"
redis> SET phone 15820123123 # 大的数字也被编码为字符串
OK
redis> OBJECT ENCODING phone
"raw"
redis> SET age 20 # 短数字被编码为 int
OK
redis> OBJECT ENCODING age
"int"
PERSIST
PERSIST key
移除给定 key 的生存时间,将这个 key 从『易失的』(带生存时间 key )转换成『持久的』(一个不带生存时间、永不过期的 key
可用版本:
>= 2.2.0
时间复杂度:
O(1)
返回值:
当生存时间移除成功时,返回 1
如果 key 不存在或 key 没有设置生存时间,返回 0
redis> SET mykey "Hello"
OK
redis> EXPIRE mykey 10 # 为 key 设置生存时间
(integer) 1
redis> TTL mykey
(integer) 10
redis> PERSIST mykey # 移除 key 的生存时间
(integer) 1
redis> TTL mykey
(integer) -1
PEXPIRE
PEXPIRE key milliseconds
这个命令和 EXPIRE 命令的作用类似,但是它以毫秒为单位设置 key 的生存时间,而不像 EXPIRE 命令那样,以秒为单位。
可用版本:
>= 2.6.0
时间复杂度:
O(1)
返回值:
设置成功,返回 1
key 不存在或设置失败,返回 0
redis> SET mykey "Hello"
OK
redis> PEXPIRE mykey 1500
(integer) 1
redis> TTL mykey # TTL 的返回值以秒为单位
(integer) 2
redis> PTTL mykey # PTTL 可以给出准确的毫秒数
(integer) 1499
PEXPIREAT
PEXPIREAT key milliseconds-timestamp
这个命令和 EXPIREAT 命令类似,但它以毫秒为单位设置 key 的过期 unix 时间戳,而不是像 EXPIREAT 那样,以秒为单位。
可用版本:
>= 2.6.0
时间复杂度:
O(1)
返回值:
如果生存时间设置成功,返回 1
当 key 不存在或没办法设置生存时间时,返回 0 。(查看 EXPIRE 命令获取更多信息)
redis> SET mykey "Hello"
OK
redis> PEXPIREAT mykey 1555555555005
(integer) 1
redis> TTL mykey # TTL 返回秒
(integer) 223157079
redis> PTTL mykey # PTTL 返回毫秒
(integer) 223157079318
PTTL
PTTL key
这个命令类似于 TTL 命令,但它以毫秒为单位返回 key 的剩余生存时间,而不是像 TTL 命令那样,以秒为单位。
可用版本:
>= 2.6.0
复杂度:
O(1)
返回值:
当 key 不存在时,返回 -2
当 key 存在但没有设置剩余生存时间时,返回 -1
否则,以毫秒为单位,返回 key
在 Redis 2.8 以前,当 key 不存在,或者 key 没有设置剩余生存时间时,命令都返回 -1
# 不存在的 key
redis> FLUSHDB
OK
redis> PTTL key
(integer) -2
# key 存在,但没有设置剩余生存时间
redis> SET key value
OK
redis> PTTL key
(integer) -1
# 有剩余生存时间的 key
redis> PEXPIRE key 10086
(integer) 1
redis> PTTL key
(integer) 6179
RANDOMKEY
RANDOMKEY
从当前数据库中随机返回(不删除)一个 key
可用版本:
>= 1.0.0
时间复杂度:
O(1)
返回值:
当数据库不为空时,返回一个 key
当数据库为空时,返回 nil
# 数据库不为空
redis> MSET fruit "apple" drink "beer" food "cookies" # 设置多个 key
OK
redis> RANDOMKEY
"fruit"
redis> RANDOMKEY
"food"
redis> KEYS * # 查看数据库内所有key,证明 RANDOMKEY 并不删除 key
1) "food"
2) "drink"
3) "fruit"
# 数据库为空
redis> FLUSHDB # 删除当前数据库所有 key
OK
redis> RANDOMKEY
(nil)
RENAME
RENAME key newkey
将 key 改名为 newkey 。
当 key 和 newkey 相同,或者 key 不存在时,返回一个错误。
当 newkey 已经存在时, RENAME 命令将覆盖旧值。
可用版本:
>= 1.0.0
时间复杂度:
O(1)
返回值:
改名成功时提示 OK
# key 存在且 newkey 不存在
redis> SET message "hello world"
OK
redis> RENAME message greeting
OK
redis> EXISTS message # message 不复存在
(integer) 0
redis> EXISTS greeting # greeting 取而代之
(integer) 1
# 当 key 不存在时,返回错误
redis> RENAME fake_key never_exists
(error) ERR no such key
# newkey 已存在时, RENAME 会覆盖旧 newkey
redis> SET pc "lenovo"
OK
redis> SET personal_computer "dell"
OK
redis> RENAME pc personal_computer
OK
redis> GET pc
(nil)
redis:1> GET personal_computer # 原来的值 dell 被覆盖了
"lenovo"
RENAMENX
RENAMENX key newkey
当且仅当 newkey 不存在时,将 key 改名为 newkey
当 key
可用版本:
>= 1.0.0
时间复杂度:
O(1)
返回值:
修改成功时,返回 1
如果 newkey 已经存在,返回 0
# newkey 不存在,改名成功
redis> SET player "MPlyaer"
OK
redis> EXISTS best_player
(integer) 0
redis> RENAMENX player best_player
(integer) 1
# newkey存在时,失败
redis> SET animal "bear"
OK
redis> SET favorite_animal "butterfly"
OK
redis> RENAMENX animal favorite_animal
(integer) 0
redis> get animal
"bear"
redis> get favorite_animal
"butterfly"
RESTORE
RESTORE key ttl serialized-value
反序列化给定的序列化值,并将它和给定的 key 关联。
参数 ttl 以毫秒为单位为 key 设置生存时间;如果 ttl 为 0 ,那么不设置生存时间。
RESTORE 在执行反序列化之前会先对序列化值的 RDB 版本和数据校验和进行检查,如果 RDB 版本不相同或者数据不完整的话,那么 RESTORE 会拒绝进行反序列化,并返回一个错误。
更多信息可以参考 DUMP 命令。
可用版本:
>= 2.6.0
时间复杂度:
查找给定键的复杂度为 O(1) ,对键进行反序列化的复杂度为 O(N*M) ,其中 N 是构成 key
有序集合(sorted set)的反序列化复杂度为 O(N*M*log(N)) ,因为有序集合每次插入的复杂度为 O(log(N)) 。
如果反序列化的对象是比较小的字符串,那么复杂度为 O(1) 。
返回值:
如果反序列化成功那么返回 OK
redis> SET greeting "hello, dumping world!"
OK
redis> DUMP greeting
"\x00\x15hello, dumping world!\x06\x00E\xa0Z\x82\xd8r\xc1\xde"
redis> RESTORE greeting-again 0 "\x00\x15hello, dumping world!\x06\x00E\xa0Z\x82\xd8r\xc1\xde"
OK
redis> GET greeting-again
"hello, dumping world!"
redis> RESTORE fake-message 0 "hello moto moto blah blah" ; 使用错误的值进行反序列化
(error) ERR DUMP payload version or checksum are wrong
SORT
SORT key [BY pattern] [LIMIT offset count] [GET pattern [GET pattern ...]] [ASC | DESC] [ALPHA] [STORE destination]
返回或保存给定列表、集合、有序集合 key
排序默认以数字作为对象,值被解释为双精度浮点数,然后进行比较。
一般 SORT 用法
最简单的 SORT 使用方法是 SORT key 和 SORT key DESC :
SORT key 返回键值从小到大排序的结果。
SORT key DESC 返回键值从大到小排序的结果。
假设 today_cost 列表保存了今日的开销金额, 那么可以用 SORT 命令对它进行排序:
# 开销金额列表
redis> LPUSH today_cost 30 1.5 10 8
(integer) 4
# 排序
redis> SORT today_cost
1) "1.5"
2) "8"
3) "10"
4) "30"
# 逆序排序
redis 127.0.0.1:6379> SORT today_cost DESC
1) "30"
2) "10"
3) "8"
4) "1.5"
使用 ALPHA 修饰符对字符串进行排序
因为 SORT 命令默认排序对象为数字, 当需要对字符串进行排序时, 需要显式地在 SORT 命令之后添加 ALPHA 修饰符:
# 网址
redis> LPUSH website "www.reddit.com"
(integer) 1
redis> LPUSH website "www.slashdot.com"
(integer) 2
redis> LPUSH website "www.infoq.com"
(integer) 3
# 默认(按数字)排序
redis> SORT website
1) "www.infoq.com"
2) "www.slashdot.com"
3) "www.reddit.com"
# 按字符排序
redis> SORT website ALPHA
1) "www.infoq.com"
2) "www.reddit.com"
3) "www.slashdot.com"
TTL
TTL key
以秒为单位,返回给定 key
可用版本:
>= 1.0.0
时间复杂度:
O(1)
返回值:
当 key 不存在时,返回 -2
当 key 存在但没有设置剩余生存时间时,返回 -1
否则,以秒为单位,返回 key
在 Redis 2.8 以前,当 key 不存在,或者 key 没有设置剩余生存时间时,命令都返回 -1
# 不存在的 key
redis> FLUSHDB
OK
redis> TTL key
(integer) -2
# key 存在,但没有设置剩余生存时间
redis> SET key value
OK
redis> TTL key
(integer) -1
# 有剩余生存时间的 key
redis> EXPIRE key 10086
(integer) 1
redis> TTL key
(integer) 10084
TYPE
TYPE key
返回 key
可用版本:
>= 1.0.0
时间复杂度:
O(1)
返回值:
none
string
list
set
zset
hash
# 字符串
redis> SET weather "sunny"
OK
redis> TYPE weather
string
# 列表
redis> LPUSH book_list "programming in scala"
(integer) 1
redis> TYPE book_list
list
# 集合
redis> SADD pat "dog"
(integer) 1
redis> TYPE pat
set
SCAN
SCAN cursor [MATCH pattern] [COUNT count]
SCAN 命令及其相关的 SSCAN 命令、 HSCAN 命令和 ZSCAN 命令都用于增量地迭代(incrementally iterate)一集元素(a collection of elements):
SCAN 命令用于迭代当前数据库中的数据库键。
SSCAN 命令用于迭代集合键中的元素。
HSCAN 命令用于迭代哈希键中的键值对。
ZSCAN 命令用于迭代有序集合中的元素(包括元素成员和元素分值)。
以上列出的四个命令都支持增量式迭代, 它们每次执行都只会返回少量元素, 所以这些命令可以用于生产环境, 而不会出现像 KEYS 命令、 SMEMBERS 命令带来的问题 —— 当 KEYS 命令被用于处理一个大的数据库时, 又或者 SMEMBERS 命令被用于处理一个大的集合键时, 它们可能会阻塞服务器达数秒之久。
不过, 增量式迭代命令也不是没有缺点的: 举个例子, 使用 SMEMBERS 命令可以返回集合键当前包含的所有元素, 但是对于 SCAN 这类增量式迭代命令来说, 因为在对键进行增量式迭代的过程中, 键可能会被修改, 所以增量式迭代命令只能对被返回的元素提供有限的保证 (offer limited guarantees about the returned elements)。
因为 SCAN 、 SSCAN 、 HSCAN 和 ZSCAN 四个命令的工作方式都非常相似, 所以这个文档会一并介绍这四个命令, 但是要记住:
SSCAN 命令、 HSCAN 命令和 ZSCAN 命令的第一个参数总是一个数据库键。
而 SCAN 命令则不需要在第一个参数提供任何数据库键 —— 因为它迭代的是当前数据库中的所有数据库键。
SCAN 命令的基本用法
SCAN 命令是一个基于游标的迭代器(cursor based iterator): SCAN 命令每次被调用之后, 都会向用户返回一个新的游标, 用户在下次迭代时需要使用这个新游标作为 SCAN 命令的游标参数, 以此来延续之前的迭代过程。
当 SCAN 命令的游标参数被设置为 0 时, 服务器将开始一次新的迭代, 而当服务器向用户返回值为 0 的游标时, 表示迭代已结束。
以下是一个 SCAN 命令的迭代过程示例:
redis 127.0.0.1:6379> scan 0
1) "17"
2) 1) "key:12"
2) "key:8"
3) "key:4"
4) "key:14"
5) "key:16"
6) "key:17"
7) "key:15"
8) "key:10"
9) "key:3"
10) "key:7"
11) "key:1"
redis 127.0.0.1:6379> scan 17
1) "0"
2) 1) "key:5"
2) "key:18"
3) "key:0"
4) "key:2"
5) "key:19"
6) "key:13"
7) "key:6"
8) "key:9"
9) "key:11"
在上面这个例子中, 第一次迭代使用 0 作为游标, 表示开始一次新的迭代。
第二次迭代使用的是第一次迭代时返回的游标, 也即是命令回复第一个元素的值 —— 17 。
从上面的示例可以看到, SCAN 命令的回复是一个包含两个元素的数组, 第一个数组元素是用于进行下一次迭代的新游标, 而第二个数组元素则是一个数组, 这个数组中包含了所有被迭代的元素。
在第二次调用 SCAN 命令时, 命令返回了游标 0 , 这表示迭代已经结束, 整个数据集(collection)已经被完整遍历过了。
以 0 作为游标开始一次新的迭代, 一直调用 SCAN 命令, 直到命令返回游标 0 , 我们称这个过程为一次完整遍历(full iteration)
。
SCAN 命令的保证(guarantees)
SCAN 命令, 以及其他增量式迭代命令, 在进行完整遍历的情况下可以为用户带来以下保证: 从完整遍历开始直到完整遍历结束期间, 一直存在于数据集内的所有元素都会被完整遍历返回; 这意味着, 如果有一个元素, 它从遍历开始直到遍历结束期间都存在于被遍历的数据集当中, 那么 SCAN 命令总会在某次迭代中将这个元素返回给用户。
然而因为增量式命令仅仅使用游标来记录迭代状态, 所以这些命令带有以下缺点:
同一个元素可能会被返回多次。 处理重复元素的工作交由应用程序负责, 比如说, 可以考虑将迭代返回的元素仅仅用于可以安全地重复执行多次的操作上。
如果一个元素是在迭代过程中被添加到数据集的, 又或者是在迭代过程中从数据集中被删除的, 那么这个元素可能会被返回, 也可能不会, 这是未定义的(undefined)。
SCAN 命令每次执行返回的元素数量
增量式迭代命令并不保证每次执行都返回某个给定数量的元素。
增量式命令甚至可能会返回零个元素, 但只要命令返回的游标不是 0
不过命令返回的元素数量总是符合一定规则的, 在实际中:
- 对于一个大数据集来说, 增量式迭代命令每次最多可能会返回数十个元素;
- 而对于一个足够小的数据集来说, 如果这个数据集的底层表示为编码数据结构(encoded data structure,适用于是小集合键、小哈希键和小有序集合键), 那么增量迭代命令将在一次调用中返回数据集中的所有元素。
最后, 用户可以通过增量式迭代命令提供的 COUNT
COUNT 选项
虽然增量式迭代命令不保证每次迭代所返回的元素数量, 但我们可以使用 COUNT
基本上, COUNT
虽然 COUNT 选项只是对增量式迭代命令的一种提示(hint), 但是在大多数情况下, 这种提示都是有效的。
- COUNT 参数的默认值为 10
- 在迭代一个足够大的、由哈希表实现的数据库、集合键、哈希键或者有序集合键时, 如果用户没有使用 MATCH 选项, 那么命令返回的元素数量通常和 COUNT 选项指定的一样, 或者比 COUNT
- 在迭代一个编码为整数集合(intset,一个只由整数值构成的小集合)、 或者编码为压缩列表(ziplist,由不同值构成的一个小哈希或者一个小有序集合)时, 增量式迭代命令通常会无视 COUNT
并非每次迭代都要使用相同的 COUNT 值。
用户可以在每次迭代中按自己的需要随意改变 COUNT
MATCH 选项
和 KEYS 命令一样, 增量式迭代命令也可以通过提供一个 glob 风格的模式参数, 让命令只返回和给定模式相匹配的元素, 这一点可以通过在执行增量式迭代命令时, 通过给定 MATCH <pattern> 参数来实现。
以下是一个使用 MATCH 选项进行迭代的示例:
redis 127.0.0.1:6379> sadd myset 1 2 3 foo foobar feelsgood
(integer) 6
redis 127.0.0.1:6379> sscan myset 0 match f*
1) "0"
2) 1) "foo"
2) "feelsgood"
3) "foobar"
需要注意的是, 对元素的模式匹配工作是在命令从数据集中取出元素之后, 向客户端返回元素之前的这段时间内进行的, 所以如果被迭代的数据集中只有少量元素和模式相匹配, 那么迭代命令或许会在多次执行中都不返回任何元素。
以下是这种情况的一个例子:
redis 127.0.0.1:6379> scan 0 MATCH *11*
1) "288"
2) 1) "key:911"
redis 127.0.0.1:6379> scan 288 MATCH *11*
1) "224"
2) (empty list or set)
redis 127.0.0.1:6379> scan 224 MATCH *11*
1) "80"
2) (empty list or set)
redis 127.0.0.1:6379> scan 80 MATCH *11*
1) "176"
2) (empty list or set)
redis 127.0.0.1:6379> scan 176 MATCH *11* COUNT 1000
1) "0"
2) 1) "key:611"
2) "key:711"
3) "key:118"
4) "key:117"
5) "key:311"
6) "key:112"
7) "key:111"
8) "key:110"
9) "key:113"
10) "key:211"
11) "key:411"
12) "key:115"
13) "key:116"
14) "key:114"
15) "key:119"
16) "key:811"
17) "key:511"
18) "key:11"
如你所见, 以上的大部分迭代都不返回任何元素。
在最后一次迭代, 我们通过将 COUNT 选项的参数设置为 1000
并发执行多个迭代
在同一时间, 可以有任意多个客户端对同一数据集进行迭代, 客户端每次执行迭代都需要传入一个游标, 并在迭代执行之后获得一个新的游标, 而这个游标就包含了迭代的所有状态, 因此, 服务器无须为迭代记录任何状态。
中途停止迭代
因为迭代的所有状态都保存在游标里面, 而服务器无须为迭代保存任何状态, 所以客户端可以在中途停止一个迭代, 而无须对服务器进行任何通知。
即使有任意数量的迭代在中途停止, 也不会产生任何问题。
使用错误的游标进行增量式迭代
使用间断的(broken)、负数、超出范围或者其他非正常的游标来执行增量式迭代并不会造成服务器崩溃, 但可能会让命令产生未定义的行为。
未定义行为指的是, 增量式命令对返回值所做的保证可能会不再为真。
只有两种游标是合法的:
- 在开始一个新的迭代时, 游标必须为 0
- 增量式迭代命令在执行之后返回的, 用于延续(continue)迭代过程的游标。
迭代终结的保证
增量式迭代命令所使用的算法只保证在数据集的大小有界(bounded)的情况下, 迭代才会停止, 换句话说, 如果被迭代数据集的大小不断地增长的话, 增量式迭代命令可能永远也无法完成一次完整迭代。
从直觉上可以看出, 当一个数据集不断地变大时, 想要访问这个数据集中的所有元素就需要做越来越多的工作, 能否结束一个迭代取决于用户执行迭代的速度是否比数据集增长的速度更快。
可用版本:
>= 2.8.0
时间复杂度:
增量式迭代命令每次执行的复杂度为 O(1) , 对数据集进行一次完整迭代的复杂度为 O(N) , 其中 N 为数据集中的元素数量。
返回值:
SCAN 命令、 SSCAN 命令、 HSCAN 命令和 ZSCAN 命令都返回一个包含两个元素的 multi-bulk 回复: 回复的第一个元素是字符串表示的无符号 64 位整数(游标), 回复的第二个元素是另一个 multi-bulk 回复, 这个 multi-bulk 回复包含了本次被迭代的元素。
SCAN 命令返回的每个元素都是一个数据库键。
SSCAN 命令返回的每个元素都是一个集合成员。
HSCAN 命令返回的每个元素都是一个键值对,一个键值对由一个键和一个值组成。
ZSCAN 命令返回的每个元素都是一个有序集合元素,一个有序集合元素由一个成员(member)和一个分值(score)组成。