目录
- resnet50
- def _make_layer(self, block, planes, blocks_num, stride=1)讲解
- resnet101 resnet152
- SE
- 初始版本--采用Linear求SE(和图一样)
- 将FC的操作,用conv逐点卷积的方式替代
- IBN
- SE_IBN_Bottleneck
resnet50
对于resnet50,输入一张(1,3,224,224)的图片,经过stem(用Sequential写的一个conv层)进行压缩得到(1,64,56,56)然后丢到layer1 ->layer4中,最终输出(1,2048,7,7),如下
有时你会纠结它这个代码为啥要这样写,这完全在于resnet50自己的特点,如果换个model的话,网络的每个类,可能就不是这样写了
resnet50特点描述
conv block:加边缘分支downsample=True,输出输出通道发生改变,不能连续串联,作用是增大通道数
identity block:无分支,通道数不变,可以串联,用于加深网络。
inplanes:输入通道
planes:中间处理时候的通道
planes*expansion:输出维度
downsample:要不要残差边上加conv,downsample=True:加conv
Bottleneck类的特点:
1.对于左分支有三层的conv
conv1:conv(input,mid)维度变
conv2:conv(mid,mid)维度不变
conv3:conv(mid,out)维度变
2.每一个layer都是以conv block起步,以上都是identity block
3.对于stride,所有的Identity的步长都是1,Conv block的stride是变动的
对于Bottleneck-用来生成上图conv block or identity block,代码对着上面的网络结构图也比较容易理解,对我来讲make_layer的过程比较复杂,所以记录一下。
def _make_layer(self, block, planes, blocks_num, stride=1)讲解
调用函数生成layer1 = self._make_layer(block, 64, layers[0],stride=1)
- 初始化downsample = None,然后根据判断决定是否生成
downsample
=nn.Sequential() - 生成layers = [],存放残差块
- 生成conv Block,根据网络特性resnet初始化时就有了inplane=64,调用make_layer层时赋值了(plane,stride)
block(self.inplanes=64, planes, stride, downsample))
生成conv Block,然后append进行list - self.inplanes更新,得下一个残差块输入通道数
self.inplanes = planes * block.expansion - for i in range(1, blocks_num):#blocks是个数字=3,以下循环2次生成两个 Identity block,生成很简单,只需要inplances,planes就行,无右分支
layers.append(block(self.inplanes, planes)
) -
return nn.Sequential(*layers)
调用nn.Sequential将layers列表中的一个个独立的残差块,按放入list的先后,首尾相连,得到一个output的输出
找网络的某一层list(resnet.children())[4][0].conv1
#利用.childern()生成list形式resnet.layer1[0].conv1
#直接根据print(resnet)找到需要的层
这也验证了生成layer1的过程:多个Bottleneck,append进行list里,list -> layer1,调用时:resnet.layer1[0].conv1
每个layer的残差块的数量图
代码
其中self.layer4 = self._make_layer(block, 512, layers[3], stride=last_stride)
对于最后一层的stride原本=2,因为stride=2特征图会变小从(14,14)->(7,7),有学者认为特征图过小,提出的信息不好,这里将stride设置成可变的,根据需求设为1。
from torch import nn
import torch
"""
conv block:加边缘分支downsample=True,输出输出通道发生改变,不能连续串联,作用是增大通道数
identity block:无分支,通道数不变,可以串联,用于加深网络。
inplanes:输入通道
planes:中间处理时候的通道
planes*expansion:输出维度
downsample:要不要残差边上加conv,downsample=True:加conv
Bottleneck类的特点:
1.对于左分支有三层的conv
conv1:conv(input,mid)维度变
conv2:conv(mid,mid)维度不变
conv3:conv(mid,out)维度变
2.每一个layer都是以conv block起步,以上都是identity block
3.对于stride,所有的Identity的步长都是1,Conv block的stride是变动的
"""
class Bottleneck(nn.Module):#(残差块的生成)block类,控制生成conv block or identity block
expansion = 4#每个stage中维度拓展的倍数,通过网络图发现,输出通道都是mid层的4倍
def __init__(self, inplanes, planes, stride=1, downsample=None):#inplanes:输入通道 planes:中间处理时候的通道,需要的参数是(输入通道,中间通道,输入步长)其他conv步长在网络中已经写好,out_channel由midchannel x expansion获得
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)#(256,64)(64,64)(64,64x4)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
# 是否直连(如果时Identity block就是直连;如果是Conv Block就需要对参差边进行卷积,改变通道数和size)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, last_stride=2, block=Bottleneck,layers=[3, 4, 6, 3]):#layers的数据描述的是一层中conv层+identity层的数量
self.inplanes = 64#经过前面的stem预处理后,生成64通道
super().__init__()
# stem的网络层
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
# self.relu = nn.ReLU(inplace=True) # add missed relu
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0)
self.layer1 = self._make_layer(block, 64, layers[0],stride=1)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=last_stride)
#planes=64,128,256,512指mid的维度
#blocksn_num=layers[0]=3表明layer1中有3个残差块(包括conv+Identity)
#stride=1指的是每个layer的起始conv的strip,既是残差块的左分支的步长,又是右分支步长
def _make_layer(self, block, planes, blocks_num, stride=1):
downsample = None
# 残差块右面小分支downsample模块
if stride != 1 or self.inplanes != planes * block.expansion:#如果stride!=1则要加conv,输出不等于输入也要加conv
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []#存放每个layers的残差Block
# Conv Block(对于每层都是要先经过conv Block,然后在Identity block,所以conv先加入list中)
layers.append(block(self.inplanes, planes, stride, downsample))#生成conv Block,#resnet初始化时就有了inplane,调用make—layer层时赋值了(plane,stride)
#planes=64是中间层,下面这行操作是为下一个残差块生成输入通道数
self.inplanes = planes * block.expansion
#identity block,通过block来查看某层layers需要多少个identity block
for i in range(1, blocks_num):#blocks是个数字
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
# x = self.relu(x) # add missed relu
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
if __name__ == '__main__':
resnet = ResNet(block=Bottleneck)
# #layer1测试
# print(resnet.layer1)
# x=torch.Tensor(1,64,56,56)
# layer1=resnet.layer1
# print(layer1(x).shape)#>torch.Size([1, 256, 56, 56]),和layer1输出维度一样
img=torch.Tensor(1,3,224,224)
out=resnet(img)
print(out.shape)
resnet101 resnet152
resnet101,resnet152可以直接调用上面写好的ResNet类来生成
分析:
这几个网络都是由4个layer组成,不同的是每个layer里的block数量不一样,因为每个layer只有第一个是conv块,其他都是identity块(可以无限拼接,起到加深网络作用),所以就产生了resnet101,resnet152网络
def resnet50(last_stride, num_classes=1000, **kwargs): # 拼接模型
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(last_stride, SEBottleneck, [3, 4, 6, 3], num_classes=num_classes, **kwargs) # 通过这个列表来控制resnet的层数
model.avgpool = nn.AdaptiveAvgPool2d(1)
return model
def resnet101(last_stride, num_classes=1000, **kwargs):
model = ResNet(last_stride, SEBottleneck, [3, 4, 23, 3], num_classes=num_classes, **kwargs)
model.avgpool = nn.AdaptiveAvgPool2d(1)
return model
def resnet152(last_stride, num_classes):
model = ResNet(last_stride, SEBottleneck, [3, 8, 36, 3], num_classes=num_classes)
model.avgpool = nn.AdaptiveAvgPool2d(1)
return model
SE
初始版本–采用Linear求SE(和图一样)
import torch.nn as nn
import torch
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, int(channel/reduction), bias=False),
nn.ReLU(inplace=True),
nn.Linear(int(channel/reduction), channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
#self.avg_pool(x)=(32,30,1,1)本来的卷积后生成这个,但这个不能直接用于liner,所以有了以下的变化过程
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)#(32,30)
y = self.fc(y).view(b, c, 1, 1)#(32,30,1,1)
return x * y.expand_as(x)
if __name__ =='__main__':
x=torch.Tensor(32,30,256,128)
SE=SELayer(30,reduction=2)
SE(x)
将FC的操作,用conv逐点卷积的方式替代
import torch.nn as nn
import torch
class SEModule(nn.Module):
def __init__(self, channels, reduction):#reduction表示缩减率c/r
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
IBN
#1.
x = torch.rand(4,8,6)y = torch.split(x,2,dim=0)
#按照4这个维度去分,按每块=2的大小切分,返回y为list
若x1 = torch.rand(5,8,6)
y = torch.split(x,2,dim=0),则一共生成3块,大小=2,2,1
#2.y = torch.split(x,[2,3,3],dim=1)
#按每块分别=[2,3,3]的方式去切
#将30个通道切成两半,得到两个list(32,15,256,128),分别用IN,BN处理
class IBN(nn.Module):
def __init__(self, planes):
super(IBN, self).__init__()
half1 = int(planes / 2)
self.half = half1
half2 = planes - half1
self.IN = nn.InstanceNorm2d(half1, affine=True)
self.BN = nn.BatchNorm2d(half2)
def forward(self, x):
split = torch.split(x, self.half, 1)##将30个通道,切成两半,得到两个list(32,15,256,128)
out1 = self.IN(split[0].contiguous())
out2 = self.BN(split[1].contiguous())
out = torch.cat((out1, out2), 1)
return out
if __name__ =='__main__':
x=torch.Tensor(32,30,256,128)
IBN=IBN(30)
IBN(x)
SE_IBN_Bottleneck
如何把SE,IBN融合到要生成resnet的bottleneck上?
- INB在类初始化时ibn=False可控的,IBN只存在每个block的第一个conv后,即浅层
- SE模块加在左分支上,相当于对生成的(1,256,56,56)特征加上一个通道注意力,这样的(1,256,56,56)特征效果更好
class SEBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, ibn=False, reduction=16):
super(SEBottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
if ibn:
self.bn1 = IBN(planes) #每个block的第一个conv后,即浅层,才能考虑是否加IBN
else:
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se = SELayer(planes * 4, reduction)#block的输出通道数,即为SE模块的输入通道数
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.se(out)#se加在左分支,downsample不加se
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out