一.spidev.c文件
看一个设备驱动的方法:
module_init标识的入口初始化函数spidev_init,(module_exit标识的出口函数)
设备与设备驱动匹配时候调用的probe方法spidev_probe
设备驱动的操作函数集file_operations--->spidev_fops
@@open方法spidev_open
进行检查, 重点是以后三条语句,其他的见下面代码注释:
- spidev->users++; //spidev_data使用者计数++
- filp->private_data = spidev; //spidev_data放在文件的私有数据里
- nonseekable_open(inode, filp); //设置文件的打开模式(文件读写指针不会跟随读写操作移动)
@@read方法spidev_read
spidev = filp->private_data;=========>>status = spidev_sync_read(spidev, count);===========>>
spidev_sync(spidev, &m);==========>>status = spi_async(spidev->spi, message);===========>>
wait_for_completion(&done);========>>到了这一步是重点,在spi_async()方法中,使用以下语句将要做的事情加到workqueue中
list_add_tail(&m->queue, &bitbang->queue);
queue_work(bitbang->workqueue, &bitbang->work);
此后所有的处理程序便转移到在之前初始化的work方法中看以下代码:
点击(此处)折叠或打开
- static void bitbang_work(struct work_struct *work)
- {
- struct spi_bitbang *bitbang =
- container_of(work, struct spi_bitbang, work);
- unsigned long flags;
- int do_setup = -1;
- int (*setup_transfer)(struct spi_device *,
- struct spi_transfer *);
- setup_transfer = bitbang->setup_transfer;
- spin_lock_irqsave(&bitbang->lock, flags);
- bitbang->busy = 1;
- while (!list_empty(&bitbang->queue)) {
- struct spi_message *m;
- struct spi_device *spi;
- unsigned nsecs;
- struct spi_transfer *t = NULL;
- unsigned tmp;
- unsigned cs_change;
- int status;
- m = container_of(bitbang->queue.next, struct spi_message,
- queue);
- list_del_init(&m->queue);
- spin_unlock_irqrestore(&bitbang->lock, flags);
- /* FIXME this is made-up ... the correct value is known to
- * word-at-a-time bitbang code, and presumably chipselect()
- * should enforce these requirements too?
- */
- nsecs = 100;
- spi = m->spi;
- tmp = 0;
- cs_change = 1;
- status = 0;
- list_for_each_entry (t, &m->transfers, transfer_list) {
- /* override speed or wordsize? */
- if (t->speed_hz || t->bits_per_word)
- do_setup = 1;
- /* init (-1) or override (1) transfer params */
- if (do_setup != 0) {
- if (!setup_transfer) {
- status = -ENOPROTOOPT;
- break;
- }
- status = setup_transfer(spi, t);
- if (status < 0)
- break;
- }
- /* set up default clock polarity, and activate chip;
- * this implicitly updates clock and spi modes as
- * previously recorded for this device via setup().
- * (and also deselects any other chip that might be
- * selected ...)
- */
- if (cs_change) {
- bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
- ndelay(nsecs);
- }
- cs_change = t->cs_change;
- if (!t->tx_buf && !t->rx_buf && t->len) {
- status = -EINVAL;
- break;
- }
- /* transfer data. the lower level code handles any
- * new dma mappings it needs. our caller always gave
- * us dma-safe buffers.
- */
- if (t->len) {
- /* REVISIT dma API still needs a designated
- * DMA_ADDR_INVALID; ~0 might be better.
- */
- if (!m->is_dma_mapped)
- t->rx_dma = t->tx_dma = 0;
- status = bitbang->txrx_bufs(spi, t);
- }
- if (status > 0)
- m->actual_length += status;
- if (status != t->len) {
- /* always report some kind of error */
- if (status >= 0)
- status = -EREMOTEIO;
- break;
- }
- status = 0;
- /* protocol tweaks before next transfer */
- if (t->delay_usecs)
- udelay(t->delay_usecs);
- if (!cs_change)
- continue;
- if (t->transfer_list.next == &m->transfers)
- break;
- /* sometimes a short mid-message deselect of the chip
- * may be needed to terminate a mode or command
- */
- ndelay(nsecs);
- bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
- ndelay(nsecs);
- }
- m->status = status;
- m->complete(m->context);
- /* restore speed and wordsize if it was overridden */
- if (do_setup == 1)
- setup_transfer(spi, NULL);
- do_setup = 0;
- /* normally deactivate chipselect ... unless no error and
- * cs_change has hinted that the next message will probably
- * be for this chip too.
- */
- if (!(status == 0 && cs_change)) {
- ndelay(nsecs);
- bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
- ndelay(nsecs);
- }
- spin_lock_irqsave(&bitbang->lock, flags);
- }
- bitbang->busy = 0;
- spin_unlock_irqrestore(&bitbang->lock, flags);
- }
结束处理所有任务后,见上面红色底纹部分解除wait_for_completion(&done);
最后missing = copy_to_user(buf, spidev->buffer, status);将数据发送到用户空间
@@write方法spidev_write
与上面open方式基本相同
@@ioctl方法spidev_ioctl
具体的详解见下面章节(三,四)
下面是spidev.c添加注释部分
[cpp] view plaincopy
- #include <linux/init.h>
- #include <linux/module.h>
- #include <linux/ioctl.h>
- #include <linux/fs.h>
- #include <linux/device.h>
- #include <linux/err.h>
- #include <linux/list.h>
- #include <linux/errno.h>
- #include <linux/mutex.h>
- #include <linux/slab.h>
- #include <linux/spi/spi.h>
- #include <linux/spi/spidev.h>
- #include <asm/uaccess.h>
- #define SPIDEV_MAJOR 153 //spidev主设备号
- #define N_SPI_MINORS 32 /* ... up to 256 */
- static DECLARE_BITMAP(minors, N_SPI_MINORS); //声明次设备位图
- #define SPI_MODE_MASK (SPI_CPHA|SPI_CPOL|SPI_CS_HIGH|SPI_LSB_FIRST|SPI_3WIRE|SPI_LOOP|SPI_NO_CS|SPI_READY)
- struct spidev_data {
- //设备号
- //自旋锁
- struct spi_device *spi; //spi设备结构体
- struct list_head device_entry;
- struct mutex buf_lock; //互斥锁
- //使用者计数
- //缓冲区
- };
- static LIST_HEAD(device_list); //声明spi设备链表
- static DEFINE_MUTEX(device_list_lock); //定义互斥锁
- static unsigned bufsiz = 4096; //最大传输缓冲区大小
- module_param(bufsiz, uint, S_IRUGO);
- MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
- static void spidev_complete(void *arg)
- {
- //调用complete
- }
- static ssize_t spidev_sync(struct spidev_data *spidev, struct spi_message *message)
- {
- DECLARE_COMPLETION_ONSTACK(done);
- int status;
- //设置spi消息的complete方法 回调函数
- message->context = &done;
- spin_lock_irq(&spidev->spi_lock);
- if (spidev->spi == NULL) //判断是否有指定对应的spi设备
- status = -ESHUTDOWN;
- else
- //spi异步同步
- spin_unlock_irq(&spidev->spi_lock);
- if (status == 0) {
- //等待传输完成
- //获取spi消息传输事务状态
- if (status == 0)
- //status等于传输的实际长度
- }
- return status; //返回实际传输长度
- }
- static inline ssize_t spidev_sync_write(struct spidev_data *spidev, size_t len)
- {
- struct spi_transfer t = {
- //发送缓冲区
- //发送数据长度
- };
- struct spi_message m;
- //初始化spi消息(初始化spi传递事务队列)
- //添加spr传递到该队列
- return spidev_sync(spidev, &m); //同步读写
- }
- static inline ssize_t spidev_sync_read(struct spidev_data *spidev, size_t len)
- {
- struct spi_transfer t = {
- //接收缓冲区
- //接收数据长度
- };
- struct spi_message m;
- //初始化spi消息(初始化spi传递事务队列)
- //添加spr传递到该队列
- return spidev_sync(spidev, &m); //同步读写
- }
- static ssize_t spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
- {
- struct spidev_data *spidev;
- ssize_t status = 0;
- if (count > bufsiz) //传输数据大于缓冲区容量
- return -EMSGSIZE;
- //从文件私有数据指针获取spidev_data
- //上互斥锁
- //同步读,返回传输数据长度
- if (status > 0) {
- long missing; //丢失的数据个数
- //内核空间复制到用户空间
- if (missing == status) //丢失的数据个数等于要传输的数据个数
- status = -EFAULT;
- else
- //传输成功的数据个数
- }
- //解互斥锁
- return status; //返回读取成功的数据个数
- }
- static ssize_t spidev_write(struct file *filp, const char __user *buf,size_t count, loff_t *f_pos)
- {
- struct spidev_data *spidev;
- ssize_t status = 0;
- long missing;
- if (count > bufsiz) //传输数据大于缓冲区容量
- return -EMSGSIZE;
- //从文件私有数据指针获取spidev_data
- //上互斥锁
- //用户空间复制到内核空间
- if (missing == 0) { //传输失败个数为0
- //同步写,返回传输数据长度
- }
- else
- status = -EFAULT;
- //解互斥锁
- return status; //返回写数据的实际个数
- }
- static int spidev_message(struct spidev_data *spidev,struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
- {
- struct spi_message msg;
- struct spi_transfer *k_xfers;
- struct spi_transfer *k_tmp;
- struct spi_ioc_transfer *u_tmp;
- unsigned n, total;
- u8 *buf;
- int status = -EFAULT;
- //初始化spi消息(初始化spi传递事务队列)
- sizeof(*k_tmp), GFP_KERNEL); //分配spi传输指针内存
- if (k_xfers == NULL)
- return -ENOMEM;
- //获取spidev_data的缓冲区
- total = 0;
- //n=xfers为spi_ioc_transfer个数,u_tmp = u_xfers为要处理的spi_ioc_transfer指针
- for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;n;n--, k_tmp++, u_tmp++) {
- //设置传输信息的长度
- //累加传输信息的总长度
- if (total > bufsiz) { //信息量超过bufsiz缓冲区最大容量
- status = -EMSGSIZE;
- goto done;
- }
- if (u_tmp->rx_buf) { //接收缓冲区指针不为空
- //缓冲区指向buf
- if (!access_ok(VERIFY_WRITE, (u8 __user *)(uintptr_t) u_tmp->rx_buf,u_tmp->len))
- goto done;
- }
- if (u_tmp->tx_buf) { //发送缓冲区指针不为空
- //缓冲区指针指向buf
- if (copy_from_user(buf, (const u8 __user *)(uintptr_t) u_tmp->tx_buf,u_tmp->len)) //用户空间复制数据到buf
- goto done;
- }
- //缓冲区指针移动一个传输信息的长度
- //设置cs_change
- //设置bits_per_word 一个字多少位
- //设置delay_usecs 毫秒级延时
- //设置speed_hz 速率
- #ifdef VERBOSE
- " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
- "rx " : "",u_tmp->tx_buf ? "tx " : "",u_tmp->cs_change ? "cs " : "",
- u_tmp->bits_per_word ? : spidev->spi->bits_per_word,u_tmp->delay_usecs,u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
- #endif
- //添加spr传递到该队列
- }
- //for循环的作用是将spi_ioc_transfer批量转换为spi传递结构体spi_transfer,然后添加进spi传递事务队列
- //同步读写
- if (status < 0)
- goto done;
- //获取spidev_data缓冲区指针
- for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) { //批量从内核空间复制spi_ioc_transfer到用户空间
- if (u_tmp->rx_buf) { //判断是否存在接收缓冲区
- if (__copy_to_user((u8 __user *)(uintptr_t) u_tmp->rx_buf, buf,u_tmp->len)) {
- status = -EFAULT;
- goto done;
- }
- }
- //buf指针位置调整指向下一个spi_ioc_transfer
- }
- //status等于实际传输的数据长度
- done:
- //释放k_xfers
- return status; //返回实际传输的数据长度
- }
- static long spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
- {
- int err = 0;
- int retval = 0;
- struct spidev_data *spidev;
- struct spi_device *spi;
- u32 tmp;
- unsigned n_ioc;
- struct spi_ioc_transfer *ioc;
- if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC) //判断控制命令的类型
- return -ENOTTY;
- if (_IOC_DIR(cmd) & _IOC_READ) //判断控制命令的方向是否为读read
- void __user *)arg, _IOC_SIZE(cmd)); //判断传输数据大小
- if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE) //判断控制命令的方向是否为写write
- void __user *)arg, _IOC_SIZE(cmd)); //判断传输数据大小
- if (err)
- return -EFAULT;
- //从文件私有数据中获取spidev_data
- //上自旋锁
- //获取spi设备
- //解自旋锁
- if (spi == NULL) //获取spi设备失败
- return -ESHUTDOWN; //则返回错误
- //上互斥锁
- switch (cmd) {
- case SPI_IOC_RD_MODE: //设置spi读模式 (此处原作者的理解与我不同,这里应该是应用程序获取数据)
- retval = __put_user(spi->mode & SPI_MODE_MASK,(__u8 __user *)arg);
- break;
- case SPI_IOC_RD_LSB_FIRST: //设置spi读最低有效位 (此处原作者的理解与我不同,这里应该是应用程序获取数据)
- retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,(__u8 __user *)arg);
- break;
- case SPI_IOC_RD_BITS_PER_WORD: //设置spi读每个字含多个个位 (此处原作者的理解与我不同,这里应该是应用程序获取数据)
- retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
- break;
- case SPI_IOC_RD_MAX_SPEED_HZ: //设置spi读最大速率 (此处原作者的理解与我不同,这里应该是应用程序获取数据)
- retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
- break;
- case SPI_IOC_WR_MODE: //设置spi写模式
- retval = __get_user(tmp, (u8 __user *)arg);
- if (retval == 0) {
- //获取spi设备模式
- if (tmp & ~SPI_MODE_MASK) {
- retval = -EINVAL;
- break;
- }
- tmp |= spi->mode & ~SPI_MODE_MASK;
- spi->mode = (u8)tmp;
- //配置spi设备
- if (retval < 0)
- spi->mode = save;
- else
- "spi mode %02x\n", tmp);
- }
- break;
- case SPI_IOC_WR_LSB_FIRST: //设置spi写最低有效位
- retval = __get_user(tmp, (__u8 __user *)arg);
- if (retval == 0) {
- //获取spi设备模式
- if (tmp)
- spi->mode |= SPI_LSB_FIRST;
- else
- spi->mode &= ~SPI_LSB_FIRST;
- //配置spi设备
- if (retval < 0)
- spi->mode = save;
- else
- "%csb first\n",tmp ? 'l' : 'm');
- }
- break;
- case SPI_IOC_WR_BITS_PER_WORD: //设置spi写每个字含多个个位
- //用户空间获取数据
- if (retval == 0) {
- //获取spi设备 每个字含多少位
- //更新新的spi设备 每个字含多少位
- //配置spi设备
- if (retval < 0) //配置失败
- //还原spi设备 每个字含多少位
- else
- "%d bits per word\n", tmp);
- }
- break;
- case SPI_IOC_WR_MAX_SPEED_HZ: //设置spi写最大速率
- //用户空间获取数据
- if (retval == 0) {
- //获取spi设备最大速率
- //更新新的spi设备最大速率
- //配置spi设备
- if (retval < 0) //配置失败
- //还原spi设备最大速率
- else
- "%d Hz (max)\n", tmp);
- }
- break;
- default:
- //命令必须为写方向的命令,且传输数据必须是SPI_IOC_MESSAGE()修饰的命令
- if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))|| _IOC_DIR(cmd) != _IOC_WRITE) {
- retval = -ENOTTY;
- break;
- }
- //计算传输数据大小
- if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) { //判断是否为spi_ioc_transfer对齐
- retval = -EINVAL;
- break;
- }
- sizeof(struct spi_ioc_transfer); //计算出spi_ioc_transfer数据的个数
- if (n_ioc == 0)
- break;
- //分配spi_ioc_transfer指针ioc内存
- if (!ioc) {
- retval = -ENOMEM;
- break;
- }
- if (__copy_from_user(ioc, (void __user *)arg, tmp)) { //从用户空间复制到内核空间
- //复制失败则释放ioc内存
- retval = -EFAULT;
- break;
- }
- //spidev消息处理
- //释放ioc内存
- break;
- }
- //解互斥锁
- //增加spi设备的引用计数
- return retval;
- }
- static int spidev_open(struct inode *inode, struct file *filp)
- {
- struct spidev_data *spidev;
- int status = -ENXIO;
- //上互斥锁
- //遍历device_list
- if (spidev->devt == inode->i_rdev) { //判断设备号找到对应的设备
- //设置状态为0
- break;
- }
- }
- if (status == 0) { //找得到对应的设备
- if (!spidev->buffer) { //spidev_data缓冲区为空
- //则分配内存
- if (!spidev->buffer) { //还空
- "open/ENOMEM\n"); //申请内存失败
- status = -ENOMEM;
- }
- }
- if (status == 0) { //找得到对应的设备
- //spidev_data使用者计数++
- //spidev_data放在文件的私有数据里
- //设置文件的打开模式(文件读写指针不会跟随读写操作移动)
- }
- }
- else
- "spidev: nothing for minor %d\n", iminor(inode));
- //接互斥锁
- return status;
- }
- static int spidev_release(struct inode *inode, struct file *filp)
- {
- struct spidev_data *spidev;
- int status = 0;
- mutex_lock(&device_list_lock);
- //获取spidev_data
- //清除文件的私有数据指针
- //使用者个数--
- if (!spidev->users) { //如果使用者个数为0
- int dofree;
- //释放spidev_data的缓冲区内存
- //清除spidev_data缓冲区指针
- //上自旋锁
- //判断spi设备是否与spidev_data解绑了
- //解自旋锁
- if (dofree) //没有捆绑的spi设备
- //则是否spidev_data内存
- }
- mutex_unlock(&device_list_lock);
- return status;
- }
- static const struct file_operations spidev_fops = { //文件操作函数集
- .owner = THIS_MODULE,
- //写write
- //读read
- //控制ioctl
- //打开open
- //释放release
- //文件指针移动 no_llseek表示没有移动
- };
- static struct class *spidev_class;
- static int __devinit spidev_probe(struct spi_device *spi)
- {
- struct spidev_data *spidev;
- int status;
- long minor;
- sizeof(*spidev), GFP_KERNEL); //分配spidev_data内存
- if (!spidev)
- return -ENOMEM;
- //设置spidev_data->spi(spi设备)
- spin_lock_init(&spidev->spi_lock);
- mutex_init(&spidev->buf_lock);
- //初始化spidev_data入口链表
- mutex_lock(&device_list_lock);
- //查找次设备位图分配次设备号
- if (minor < N_SPI_MINORS) {
- struct device *dev;
- //计算出设备号
- //创建设备/dev/spidev%d.%d(spidev总线号.片选号)
- "spidev%d.%d",spi->master->bus_num, spi->chip_select);
- status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
- }
- else {
- "no minor number available!\n");
- status = -ENODEV;
- }
- if (status == 0) { //分配设备号成功
- //更新次设备位图
- //添加进设备链表
- }
- mutex_unlock(&device_list_lock);
- if (status == 0)
- //spi->dev->p->driver_data=spidev
- else
- kfree(spidev);
- return status;
- }
- static int __devexit spidev_remove(struct spi_device *spi)
- {
- struct spidev_data *spidev = spi_get_drvdata(spi); //根据spi设备获取spidev_data
- //上自旋锁
- //清空spidev_data->spi指针
- //spi->dev->p->driver_data=NULL
- //解自旋锁
- //上互斥锁
- //删除spidev_data入口链表
- //销毁/dev/spidev%d.%d
- //清除次设备位图对应位
- if (spidev->users == 0) //使用者个数为0
- //释放spidev_data内存
- //解互斥锁
- return 0;
- }
- static struct spi_driver spidev_spi_driver = { //spi设备驱动
- .driver = {
- "spidev",
- .owner = THIS_MODULE,
- },
- //spidev的probe方法(当注册了modalias域为"spidev"的spi设备或板级设备,则会调用probe方法)
- //spidev的remove方法
- };
- static int __init spidev_init(void) //spidev接口初始化
- {
- int status;
- BUILD_BUG_ON(N_SPI_MINORS > 256);
- //注册字符设备,主设备号SPIDEV_MAJOR=153,捆绑的设备操作函数集为spidev_fops
- "spi", &spidev_fops);
- if (status < 0)
- return status;
- "spidev"); //创建设备类spidev_class
- if (IS_ERR(spidev_class)) {
- unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
- return PTR_ERR(spidev_class);
- }
- //注册spi设备驱动spidev_spi_driver
- if (status < 0) {
- class_destroy(spidev_class);
- unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
- }
- return status;
- }
- module_init(spidev_init); //声明初始化入口
- static void __exit spidev_exit(void) //spidev接口销毁
- {
- //注销spi设备驱动spidev_spi_driver
- //注销设备类spidev_class
- //注销字符设备
- }
- module_exit(spidev_exit); //声明初始化出口
- MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
- MODULE_DESCRIPTION("User mode SPI device interface");
- MODULE_LICENSE("GPL");
- MODULE_ALIAS("spi:spidev");
二.用户空间例子(spidev_test.c)
[cpp] view plaincopy
- #include <stdint.h>
- #include <unistd.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <getopt.h>
- #include <fcntl.h>
- #include <sys/ioctl.h>
- #include <linux/types.h>
- #include <linux/spi/spidev.h>
- #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
- static void pabort(const char *s)
- {
- perror(s);
- abort();
- }
- static const char *device = "/dev/spidev1.1";
- static uint8_t mode;
- static uint8_t bits = 8;
- static uint32_t speed = 500000;
- static uint16_t delay;
- static void transfer(int fd)
- {
- int ret;
- //要发送的数据数组
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x40, 0x00, 0x00, 0x00, 0x00, 0x95,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xAD,
- 0xF0, 0x0D,
- };
- //接收的数据数据
- struct spi_ioc_transfer tr = { //声明并初始化spi_ioc_transfer结构体
- long)tx,
- long)rx,
- .len = ARRAY_SIZE(tx),
- .delay_usecs = delay,
- .speed_hz = speed,
- .bits_per_word = bits,
- };
- //SPI_IOC_MESSAGE(1)的1表示spi_ioc_transfer的数量
- //ioctl默认操作,传输数据
- if (ret < 1)
- "can't send spi message");
- for (ret = 0; ret < ARRAY_SIZE(tx); ret++) { //打印接收缓冲区
- if (!(ret % 6)) //6个数据为一簇打印
- "");
- "%.2X ", rx[ret]);
- }
- "");
- }
- static void print_usage(const char *prog) //参数错误则打印帮助信息
- {
- "Usage: %s [-DsbdlHOLC3]\n", prog);
- " -D --device device to use (default /dev/spidev1.1)\n"
- " -s --speed max speed (Hz)\n"
- " -d --delay delay (usec)\n"
- " -b --bpw bits per word \n"
- " -l --loop loopback\n"
- " -H --cpha clock phase\n"
- " -O --cpol clock polarity\n"
- " -L --lsb least significant bit first\n"
- " -C --cs-high chip select active high\n"
- " -3 --3wire SI/SO signals shared\n");
- exit(1);
- }
- static void parse_opts(int argc, char *argv[])
- {
- while (1) {
- static const struct option lopts[] = { //参数命令表
- "device", 1, 0, 'D' },
- "speed", 1, 0, 's' },
- "delay", 1, 0, 'd' },
- "bpw", 1, 0, 'b' },
- "loop", 0, 0, 'l' },
- "cpha", 0, 0, 'H' },
- "cpol", 0, 0, 'O' },
- "lsb", 0, 0, 'L' },
- "cs-high", 0, 0, 'C' },
- "3wire", 0, 0, '3' },
- "no-cs", 0, 0, 'N' },
- "ready", 0, 0, 'R' },
- { NULL, 0, 0, 0 },
- };
- int c;
- "D:s:d:b:lHOLC3NR", lopts, NULL);
- if (c == -1)
- break;
- switch (c) {
- case 'D': //设备名
- device = optarg;
- break;
- case 's': //速率
- speed = atoi(optarg);
- break;
- case 'd': //延时时间
- delay = atoi(optarg);
- break;
- case 'b': //每字含多少位
- bits = atoi(optarg);
- break;
- case 'l': //回送模式
- mode |= SPI_LOOP;
- break;
- case 'H': //时钟相位
- mode |= SPI_CPHA;
- break;
- case 'O': //时钟极性
- mode |= SPI_CPOL;
- break;
- case 'L': //lsb 最低有效位
- mode |= SPI_LSB_FIRST;
- break;
- case 'C': //片选高电平
- mode |= SPI_CS_HIGH;
- break;
- case '3': //3线传输模式
- mode |= SPI_3WIRE;
- break;
- case 'N': //没片选
- mode |= SPI_NO_CS;
- break;
- case 'R': //从机拉低电平停止数据传输
- mode |= SPI_READY;
- break;
- default: //错误的参数
- print_usage(argv[0]);
- break;
- }
- }
- }
- int main(int argc, char *argv[])
- {
- int ret = 0;
- int fd;
- //解析传递进来的参数
- //打开设备文件
- if (fd < 0)
- "can't open device");
- /*
- * spi mode //设置spi设备模式
- */
- //写模式
- if (ret == -1)
- "can't set spi mode");
- //读模式
- if (ret == -1)
- "can't get spi mode");
- /*
- * bits per word //设置每个字含多少位
- */
- //写 每个字含多少位
- if (ret == -1)
- "can't set bits per word");
- //读 每个字含多少位
- if (ret == -1)
- "can't get bits per word");
- /*
- * max speed hz //设置速率
- */
- //写速率
- if (ret == -1)
- "can't set max speed hz");
- //读速率
- if (ret == -1)
- "can't get max speed hz");
- //打印模式,每字多少位和速率信息
- "spi mode: %d\n", mode);
- "bits per word: %d\n", bits);
- "max speed: %d Hz (%d KHz)\n", speed, speed/1000);
- //传输测试
- //关闭设备
- return ret;
- }
这里整理下ioctl的命令:
[cpp] view plaincopy
- SPI_IOC_RD_MODE //读 模式
- SPI_IOC_RD_LSB_FIRST //读 LSB
- SPI_IOC_RD_BITS_PER_WORD //读 每字多少位
- SPI_IOC_RD_MAX_SPEED_HZ //读 最大速率
- SPI_IOC_WR_MODE //写 模式
- SPI_IOC_WR_LSB_FIRST //写 LSB
- SPI_IOC_WR_BITS_PER_WORD //写 每字多少位
- SPI_IOC_WR_MAX_SPEED_HZ //写 最大速率
- SPI_IOC_MESSAGE(n) //传输n个数据包