注意力往往与encoder-decoder(seq2seq)框架搭在一起,假设我们编码前与解码后的序列如下:
编码时,我们将source通过非线性变换到中间语义:
则我们解码时,第i个输出为:
可以看到,不管i为多少,都是基于相同的中间语义C进行解码的,也就是说,我们的注意力对所有输出都是相同的。所以,注意力机制的任务就是突出重点,也就是说,我们的中间语义C对不同i应该有不同的侧重点,即上式变为:
常见的有Bahdanau Attention
e(h,s)代表一层全连接层。
及Luong Attention
代码的主要目标是通过一个描述时间的字符串,预测为数字形式的字符串。如“ten before ten o'clock a.m”预测为09:50
在jupyter上运行,代码如下:
1,导入模块,好像并没有全部使用到,如Permute,Multiply,Reshape,LearningRateScheduler等
1 from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiply, Reshape
2 from keras.layers import RepeatVector, Dense, Activation, Lambda
3 from keras.optimizers import Adam
4 #from keras.utils import to_categorical
5 from keras.models import load_model, Model
6 #from keras.callbacks import LearningRateScheduler
7 import keras.backend as K
8
9 import matplotlib.pyplot as plt
10 %matplotlib inline
11
12 import random
13 #import math
14
15 import json
16 import numpy as np
2,加载数据集,以及翻译前和翻译后的词典
1 with open('data/Time Dataset.json','r') as f:
2 dataset = json.loads(f.read())
3 with open('data/Time Vocabs.json','r') as f:
4 human_vocab, machine_vocab = json.loads(f.read())
5
6 human_vocab_size = len(human_vocab)
7 machine_vocab_size = len(machine_vocab)
这里human_vocab词典是将每个字符映射到索引,machine_vocab是将翻译后的字符映射到索引,因为翻译后的时间只包含0-9以及冒号:
3,定义数据处理方法
1 def preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty):
2 """
3 A method for tokenizing data.
4
5 Inputs:
6 dataset - A list of sentence data pairs.
7 human_vocab - A dictionary of tokens (char) to id's.
8 machine_vocab - A dictionary of tokens (char) to id's.
9 Tx - X data size
10 Ty - Y data size
11
12 Outputs:
13 X - Sparse tokens for X data
14 Y - Sparse tokens for Y data
15 Xoh - One hot tokens for X data
16 Yoh - One hot tokens for Y data
17 """
18
19 # Metadata
20 m = len(dataset)
21
22 # Initialize
23 X = np.zeros([m, Tx], dtype='int32')
24 Y = np.zeros([m, Ty], dtype='int32')
25
26 # Process data
27 for i in range(m):
28 data = dataset[i]
29 X[i] = np.array(tokenize(data[0], human_vocab, Tx))
30 Y[i] = np.array(tokenize(data[1], machine_vocab, Ty))
31
32 # Expand one hots
33 Xoh = oh_2d(X, len(human_vocab))
34 Yoh = oh_2d(Y, len(machine_vocab))
35
36 return (X, Y, Xoh, Yoh)
37
38 def tokenize(sentence, vocab, length):
39 """
40 Returns a series of id's for a given input token sequence.
41
42 It is advised that the vocab supports <pad> and <unk>.
43
44 Inputs:
45 sentence - Series of tokens
46 vocab - A dictionary from token to id
47 length - Max number of tokens to consider
48
49 Outputs:
50 tokens -
51 """
52 tokens = [0]*length
53 for i in range(length):
54 char = sentence[i] if i < len(sentence) else "<pad>"
55 char = char if (char in vocab) else "<unk>"
56 tokens[i] = vocab[char]
57
58 return tokens
59
60 def ids_to_keys(sentence, vocab):
61 """
62 Converts a series of id's into the keys of a dictionary.
63 """
64 reverse_vocab = {v: k for k, v in vocab.items()}
65
66 return [reverse_vocab[id] for id in sentence]
67
68 def oh_2d(dense, max_value):
69 """
70 Create a one hot array for the 2D input dense array.
71 """
72 # Initialize
73 oh = np.zeros(np.append(dense.shape, [max_value]))
74 # oh=np.zeros((dense.shape[0],dense.shape[1],max_value)) 这样写更为直观
75
76 # Set correct indices
77 ids1, ids2 = np.meshgrid(np.arange(dense.shape[0]), np.arange(dense.shape[1]))
78
79 # 'F'表示一列列的展开,默认按行展开。将id序列中每个数字再one-hot化。
80 oh[ids1.flatten(), ids2.flatten(), dense.flatten('F').astype(int)] = 1
81
82 return oh
4,输入中最长的字符串为41,输出长度都是5,训练测试数据使用one-hot编码后的,训练集占比80%
1 Tx = 41 # Max x sequence length
2 Ty = 5 # y sequence length
3 X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty)
4
5 # Split data 80-20 between training and test
6 train_size = int(0.8*len(dataset))
7 Xoh_train = Xoh[:train_size]
8 Yoh_train = Yoh[:train_size]
9 Xoh_test = Xoh[train_size:]
10 Yoh_test = Yoh[train_size:]
5,定义每次新预测时注意力的更新
在预测输出yi-1后,预测yi时,我们需要不同的注意力分布,即重新生成这个分布
1 # Define part of the attention layer gloablly so as to
2 # share the same layers for each attention step.
3 def softmax(x):
4 return K.softmax(x, axis=1)
5 # 重复矢量,用于将一个矢量扩展成一个维度合适的tensor
6 at_repeat = RepeatVector(Tx)
7 # 在最后一位进行维度合并
8 at_concatenate = Concatenate(axis=-1)
9 at_dense1 = Dense(8, activation="tanh")
10 at_dense2 = Dense(1, activation="relu")
11 at_softmax = Activation(softmax, name='attention_weights')
12 # 这里参数名为axes。。虽然和axis是一个意思
13 at_dot = Dot(axes=1)
14
15 # 每次新的预测的时候都需要更新attention
16 def one_step_of_attention(h_prev, a):
17 """
18 Get the context.
19
20 Input:
21 h_prev - Previous hidden state of a RNN layer (m, n_h)
22 a - Input data, possibly processed (m, Tx, n_a)
23
24 Output:
25 context - Current context (m, Tx, n_a)
26 """
27 # Repeat vector to match a's dimensions
28 h_repeat = at_repeat(h_prev)
29 # Calculate attention weights
30 i = at_concatenate([a, h_repeat]) #对应公式中x和yt-1合并
31 i = at_dense1(i)#对应公式中第一个Dense
32 i = at_dense2(i)#第二个Dense
33 attention = at_softmax(i)#Softmax,此时得到一个注意力分布
34 # Calculate the context
35 # 这里使用新的attention与输入相乘,即注意力的核心原理:对于输入产生某种偏好分布
36 context = at_dot([attention, a])#Dot,使用注意力偏好分布作用于输入,返回更新后的输入
37
38 return context
以上,注意力的计算公式如下所示:
6,定义注意力层
1 def attention_layer(X, n_h, Ty):
2 """
3 Creates an attention layer.
4
5 Input:
6 X - Layer input (m, Tx, x_vocab_size)
7 n_h - Size of LSTM hidden layer
8 Ty - Timesteps in output sequence
9
10 Output:
11 output - The output of the attention layer (m, Tx, n_h)
12 """
13 # Define the default state for the LSTM layer
14 # Lambda层不需要训练参数,这里初始化状态
15 h = Lambda(lambda X: K.zeros(shape=(K.shape(X)[0], n_h)))(X)
16 c = Lambda(lambda X: K.zeros(shape=(K.shape(X)[0], n_h)))(X)
17 # Messy, but the alternative is using more Input()
18
19 at_LSTM = LSTM(n_h, return_state=True)
20
21 output = []
22
23 # Run attention step and RNN for each output time step
# 这里就是每次预测时,先更新context,用这个新的context通过LSTM获得各个输出h
24 for _ in range(Ty):
25 # 第一次使用初始化的注意力参数作用输入X,之后使用上一次的h作用输入X,保证每次预测的时候注意力都对输入产生偏好
26 context = one_step_of_attention(h, X)
27 # 得到新的输出
28 h, _, c = at_LSTM(context, initial_state=[h, c])
29
30 output.append(h)
31 # 返回全部输出
32 return output
7,定义模型
1 layer3 = Dense(machine_vocab_size, activation=softmax)
2 layer1_size=32
3 layer2_size=64
4 def get_model(Tx, Ty, layer1_size, layer2_size, x_vocab_size, y_vocab_size):
5 """
6 Creates a model.
7
8 input:
9 Tx - Number of x timesteps
10 Ty - Number of y timesteps
11 size_layer1 - Number of neurons in BiLSTM
12 size_layer2 - Number of neurons in attention LSTM hidden layer
13 x_vocab_size - Number of possible token types for x
14 y_vocab_size - Number of possible token types for y
15
16 Output:
17 model - A Keras Model.
18 """
19
20 # Create layers one by one
21 X = Input(shape=(Tx, x_vocab_size))
22 # 使用双向LSTM
23 a1 = Bidirectional(LSTM(layer1_size, return_sequences=True), merge_mode='concat')(X)
24
25 # 注意力层
26 a2 = attention_layer(a1, layer2_size, Ty)
27 # 对输出h应用一个Dense得到最后输出y
28 a3 = [layer3(timestep) for timestep in a2]
29
30 # Create Keras model
31 model = Model(inputs=[X], outputs=a3)
32
33 return model
8,训练模型
1 model = get_model(Tx, Ty, layer1_size, layer2_size, human_vocab_size, machine_vocab_size)
2 #这里我们可以看下模型的构成,需要提前安装graphviz模块
3 from keras.utils import plot_model
4 #在当前路径下生成模型各层的结构图,自己去看看理解
5 plot_model(model,show_shapes=True,show_layer_names=True)
6 opt = Adam(lr=0.05, decay=0.04, clipnorm=1.0)
7 model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
8 # (8000,5,11)->(5,8000,11),以时间序列而非样本序列去训练,因为多个样本间是没有“序”的关系的,这样RNN也学不到啥东西
9 outputs_train = list(Yoh_train.swapaxes(0,1))
10 model.fit([Xoh_train], outputs_train, epochs=30, batch_size=100,verbose=2
如下为模型的结构图
9,评估
1 outputs_test = list(Yoh_test.swapaxes(0,1))
2 score = model.evaluate(Xoh_test, outputs_test)
3 print('Test loss: ', score[0])
10,预测
这里就随机对数据集中的一个样本进行预测
3 i = random.randint(0, len(dataset))
4
5 def get_prediction(model, x):
6 prediction = model.predict(x)
7 max_prediction = [y.argmax() for y in prediction]
8 str_prediction = "".join(ids_to_keys(max_prediction, machine_vocab))
9 return (max_prediction, str_prediction)
10
11 max_prediction, str_prediction = get_prediction(model, Xoh[i:i+1])
12
13 print("Input: " + str(dataset[i][0]))
14 print("Tokenized: " + str(X[i]))
15 print("Prediction: " + str(max_prediction))
16 print("Prediction text: " + str(str_prediction))
11,还可以查看一下注意力的图像
1 i = random.randint(0, len(dataset))
2
3 def plot_attention_graph(model, x, Tx, Ty, human_vocab, layer=7):
4 # Process input
5 tokens = np.array([tokenize(x, human_vocab, Tx)])
6 tokens_oh = oh_2d(tokens, len(human_vocab))
7
8 # Monitor model layer
9 layer = model.layers[layer]
10
11 layer_over_time = K.function(model.inputs, [layer.get_output_at(t) for t in range(Ty)])
12 layer_output = layer_over_time([tokens_oh])
13 layer_output = [row.flatten().tolist() for row in layer_output]
14
15 # Get model output
16 prediction = get_prediction(model, tokens_oh)[1]
17
18 # Graph the data
19 fig = plt.figure()
20 fig.set_figwidth(20)
21 fig.set_figheight(1.8)
22 ax = fig.add_subplot(111)
23
24 plt.title("Attention Values per Timestep")
25
26 plt.rc('figure')
27 cax = plt.imshow(layer_output, vmin=0, vmax=1)
28 fig.colorbar(cax)
29
30 plt.xlabel("Input")
31 ax.set_xticks(range(Tx))
32 ax.set_xticklabels(x)
33
34 plt.ylabel("Output")
35 ax.set_yticks(range(Ty))
36 ax.set_yticklabels(prediction)
37
38 plt.show()
39 # 这个图像如何看:先看纵坐标,从上到下,为15:48,生成1和5时注意力在four这个单词上,生成48分钟的时候注意力集中在before单词上,这个例子非常好
40 plot_attention_graph(model, dataset[i][0], Tx, Ty, human_vocab)
如图所示,在预测1和5时注意力在four单词上,预测4,8时注意力在before单词上,这比较符合逻辑。