1、安装scala的idea插件:

file —— settings —— plugins ,输入scala,搜索插件下载安装,注意版本:

idea spark 本地调试 idea配置spark_idea spark 本地调试

2、配置scala的SDK:

先下载解压scala,直接从linux服务器端解压一个就行

idea spark 本地调试 idea配置spark_hadoop_02

file —— project structure —— library,配置之后,new就可以看到scala class了:

idea spark 本地调试 idea配置spark_idea spark 本地调试_03

配置spark和scala的环境变量:

分别下载hadoop,spark和scala解压,增加环境变量:

idea spark 本地调试 idea配置spark_spark_04

idea spark 本地调试 idea配置spark_hadoop_05

3、新建maven项目:

file —— new project —— maven ,

idea spark 本地调试 idea配置spark_hadoop_06

有2个xml配置文件如下:

(1)pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>Learn-BigData</groupId>
    <artifactId>bigdata</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <scala.version>2.11.8</scala.version>
        <spark.version>2.4.0</spark.version>
        <hadoop.version>2.8.5</hadoop.version>
        <encoding>UTF-8</encoding>
    </properties>

    <repositories>
        <repository>
            <id>nexus-aliyun</id>
            <name>Nexus aliyun</name>
            <url>http://maven.aliyun.com/nexus/content/groups/public</url>
        </repository>
    </repositories>

    <dependencies>
        <!-- 导入scala的依赖 -->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
            <scope>compile</scope>
        </dependency>

        <!-- 导入spark的依赖 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>

        <!-- 指定hadoop-client API的版本 -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-common</artifactId>
            <version>${hadoop.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>${hadoop.version}</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>${hadoop.version}</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>commons-cli</groupId>
            <artifactId>commons-cli</artifactId>
            <version>1.3.1</version>
            <scope>compile</scope>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>commons-configuration</groupId>
            <artifactId>commons-configuration</artifactId>
            <version>1.6</version>
            <scope>compile</scope>
        </dependency>

    </dependencies>

    <build>
        <pluginManagement>
            <plugins>
                <!-- 编译scala的插件 -->
                <plugin>
                    <groupId>net.alchim31.maven</groupId>
                    <artifactId>scala-maven-plugin</artifactId>
                    <version>3.2.2</version>
                </plugin>
                <!-- 编译java的插件 -->
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.5.1</version>
                </plugin>
            </plugins>
        </pluginManagement>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <executions>
                    <execution>
                        <phase>compile</phase>
                        <goals>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>


            <!-- 打jar插件 -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.4.3</version>

                <configuration>
                    <createDependencyReducedPom>false</createDependencyReducedPom>
                </configuration>

                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>


</project>

(2)dependency-reduced-pom.xml,这个文件是打包时生成的,没啥用。

4、编写JavaWordCount

package cn.edu360.spark;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;

import java.util.Arrays;
import java.util.Iterator;


public class JavaWordCount {

    public static void main(String[] args) {

        SparkConf conf = new SparkConf().setAppName("JavaWordCount");
        //创建sparkContext
        JavaSparkContext jsc = new JavaSparkContext(conf);
        //指定以后从哪里读取数据
        JavaRDD<String> lines = jsc.textFile(args[0]);
        //切分压平
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String line) throws Exception {
                return Arrays.asList(line.split(" ")).iterator();
            }
        });

        //将单词和一组合在一起
        JavaPairRDD<String, Integer> wordAndOne = words.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String word) throws Exception {
                return new Tuple2<>(word, 1);
            }
        });

        //聚合
        JavaPairRDD<String, Integer> reduced = wordAndOne.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });

        //调换顺序
        JavaPairRDD<Integer, String> swaped = reduced.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<String, Integer> tp) throws Exception {
                //return new Tuple2<>(tp._2, tp._1);
                return tp.swap();
            }
        });

        //排序
        JavaPairRDD<Integer, String> sorted = swaped.sortByKey(false);

        //调整顺序
        JavaPairRDD<String, Integer> result = sorted.mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<Integer, String> tp) throws Exception {
                return tp.swap();
            }
        });

        //将数据保存到hdfs
        result.saveAsTextFile(args[1]);

        //释放资源
        jsc.stop();
        
    }
}

5、打包:双击package打包:

view  --  tool windows  --   maven project,没有出现如下目录时,点击+号,去选中pom.xml文件:

idea spark 本地调试 idea配置spark_scala_07

6、打包成功后,选择这个:

idea spark 本地调试 idea配置spark_idea spark 本地调试_08

7、进入上传到linux服务器上:

进入spark的安装目录的bin目录,执行以下代码:
spark-submit --master spark://hdp-01:7077 --class cn.edu360.spark.JavaWordCount /root/learn_dh/original-SparkTest-1.0-SNAPSHOT.jar hdfs://hdp-01:9000/spark/input/test.txt hdfs://hdp-01:9000/spark/output/wc1005

命令解释:

1、--master spark://hdp-01:7077 ,指定spark集群的master

2、--class cn.edu360.spark.JavaWordCount,指定java类名全路径

3、/root/learn_dh/original-SparkTest-1.0-SNAPSHOT.jar,指定这个jar包在linux服务器上jar的绝对路径

4、hdfs://hdp-01:9000/spark/input/test.txt ,HDFS上输入文件的路径

5、hdfs://hdp-01:9000/spark/output/wc1005,HDFS上输出文件路径。(这路径不能是已经存在的,否则会报错)

可以在http://hdp-01:8080/这里查看执行情况。

8、本地运行spark程序,则:

setMaster为local,

idea spark 本地调试 idea配置spark_spark_09

本地运行时,要配置输入输出文件的路径:

idea spark 本地调试 idea配置spark_spark_10

idea spark 本地调试 idea配置spark_hadoop_11

9、idea打开项目时,需要选中到src这一级目录,否则,打开后看不见项目结构图,这个坑的很啊:

idea spark 本地调试 idea配置spark_idea spark 本地调试_12

例如,直接选中项目根目录打开是这样的,初学者注意下,有点莫名其妙的。

idea spark 本地调试 idea配置spark_idea spark 本地调试_13

10、本地运行mapreduce和spark程序:

配置好上面的pom文件之后,不用再按照网上说的添加spark和hadoop的jar包,spark设置setMaster("local")就可以运行。

idea spark 本地调试 idea配置spark_hadoop_14

二步设置:

1、设置运行环境,edit configuration:

idea spark 本地调试 idea配置spark_idea_15

2、

idea spark 本地调试 idea配置spark_scala_16

新建maven项目,配置好pom后,不用再添加其他spark和hadoop的jar包,否则容易报莫名其妙的错误,估计是依赖冲突造成的。

在windows下配置好scala、hadoop、spark的环境变量之后:

在cmd下,输入,scala、spark-shell,可直接在本地编写scala、spark程序