2.分组和分区在Flink中的区别

分区:分区(Partitioning)是将数据流划分为多个子集,这些子集可以在不同的任务实例上进行处理,以实现数据的并行处理。
数据具体去往哪个分区,是通过指定的 key 值先进行一次 hash 再进行一次 murmurHash,通过上述计算得到的值再与并行度进行相应的计算得到。
分组:分组(Grouping)是将具有相同键值的数据元素归类到一起,以便进行后续操作(如聚合、窗口计算等)。
key值相同的数据将进入同一个分组中。
注意:数据如果具有相同的key将一定去往同一个分组和分区,但是同一分区中的数据不一定属于同一组。

3.代码示例

package com.flink.DataStream.Aggregation;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinkKeyByDemo {
    public static void main(String[] args) throws Exception {
        //TODO 创建Flink上下文执行环境
        StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置并行度为1
        streamExecutionEnvironment.setParallelism(1);
        //设置执行模式为批处理
        streamExecutionEnvironment.setRuntimeMode(RuntimeExecutionMode.BATCH);
        //TODO source 从集合中创建数据源
        DataStreamSource<String> dataStreamSource = streamExecutionEnvironment.fromElements("hello word", "hello flink");
        //TODO 方式一 匿名实现类
        SingleOutputStreamOperator<Tuple2<String, Integer>> outputStreamOperator1 = dataStreamSource
                .flatMap(new FlatMapFunction<String, String>() {
                    @Override
                    public void flatMap(String s, Collector<String> collector) throws Exception {
                        String[] s1 = s.split(" ");
                        for (String word : s1) {
                            collector.collect(word);
                        }
                    }
                })
                .map(new MapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public Tuple2<String, Integer> map(String s) throws Exception {
                        Tuple2<String, Integer> aa = Tuple2.of(s, 1);
                        return aa;
                    }
                })
                /\*\*
 \* keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为 KeyedStream(键控流)
 \* KeyedStream 可以认为是“分区流”或者“键控流”,它是对 DataStream 按照 key 的一个逻辑分区
 \* 所以泛型有两个类型:除去当前流中的元素类型外,还需要指定 key 的类型。
 \* \*/

                /\*\*
 \* 分组和分区在Flink 中具有不同的含义和作用:
 \* 分区:分区(Partitioning)是将数据流划分为多个子集,这些子集可以在不同的任务实例上进行处理,以实现数据的并行处理。
 \* 数据具体去往哪个分区,是通过指定的 key 值先进行一次 hash 再进行一次 murmurHash,通过上述计算得到的值再与并行度进行相应的计算得到。
 \* 分组:分组(Grouping)是将具有相同键值的数据元素归类到一起,以便进行后续操作 (如聚合、窗口计算等)。
 \* key 值相同的数据将进入同一个分组中。
 \* 注意:数据如果具有相同的key将一定去往同一个分组和分区,但是同一分区中的数据不一定属于同一组。
 \* \*/

                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
                        return stringIntegerTuple2.f0;
                    }
                })
                .sum(1);
        //TODO 方式二 Lamda表达式实现
        SingleOutputStreamOperator<Tuple2<String, Integer>> outputStreamOperator2 = dataStreamSource


![img]()
![img]()