1、什么是Redis 

       Redis(Remote Dictionary Server) 是一个使用 C 语言编写的,开源的(BSD许可)高性能非关系型(NoSQL)的键值对数据库。Redis 可以存储键和五种不同类型的值之间的映射。键的类型只能为字符串,值支持五种数据类型:字符串、列表、集合、散列表、有序集合。与传统数据库不同的是 Redis 的数据是存在内存中的,所以读写速度非常快,因此 redis 被广泛应用于缓存方向,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。另外,Redis 也经常用来做分布式锁。除此之外,Redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。

2、Redis有哪些数据类型

    Redis主要有5种数据类型,包括String,List,Set,Zset,Hash,满足大部分的使用要求。

   

redis设置自增ERR value is not an integer or out of range redis自增id容错处理_数据

 

 

 

 

3、Redis有哪些优缺点 Redis的应用场景

优点

 1)读写性能优异, Redis能读的速度是110000次/s,写的速度是81000次/s。

 2)支持数据持久化,支持AOF和RDB两种持久化方式。

 3)支持事务,Redis的所有操作都是原子性的,同时Redis还支持对几个操作合并后的原子性执行。

 4)数据结构丰富,除了支持string类型的value外还支持hash、set、zset、list等数据结构。

 5)支持主从复制,主机会自动将数据同步到从机,可以进行读写分离。

缺点

 1)数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。

 2)Redis 不具备自动容错和恢复功能,主机从机的宕机都会导致前端部分读写请求失败,需要等待机器重启或者手动切换前端的IP才能恢复。

 3)主机宕机,宕机前有部分数据未能及时同步到从机,切换IP后还会引入数据不一致的问题,降低了系统的可用性。

 4)Redis 较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。为避免这一问题,运维人员在系统上线时必须确保有足够的空间,这对资源造成了很大的浪费。

 

4、为什么要用 Redis /为什么要用缓存

    总结一:

   计数器

可以对 String 进行自增自减运算,从而实现计数器功能。

Redis 这种内存型数据库的读写性能非常高,很适合存储频繁读写的计数量。

缓存

将热点数据放到内存中,设置内存的最大使用量以及淘汰策略来保证缓存的命中率。

会话缓存

可以使用 Redis 来统一存储多台应用服务器的会话信息。

当应用服务器不再存储用户的会话信息,也就不再具有状态,一个用户可以请求任意一个应用服务器,从而更容易实现高可用性以及可伸缩性。

全页缓存(FPC)

除基本的会话token之外,Redis还提供很简便的FPC平台。

以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。

查找表

例如 DNS 记录就很适合使用 Redis 进行存储。

查找表和缓存类似,也是利用了 Redis 快速的查找特性。但是查找表的内容不能失效,而缓存的内容可以失效,因为缓存不作为可靠的数据来源。

消息队列(发布/订阅功能)

List 是一个双向链表,可以通过 lpush 和 rpop 写入和读取消息

不过最好使用 Kafka、RabbitMQ 等消息中间件。

分布式锁实现

在分布式场景下,无法使用单机环境下的锁来对多个节点上的进程进行同步。

可以使用 Redis 自带的 SETNX 命令实现分布式锁,除此之外,还可以使用官方提供的 RedLock 分布式锁实现。

其它

Set 可以实现交集、并集等操作,从而实现共同好友等功能。

ZSet 可以实现有序性操作,从而实现排行榜等功能。

总结二:

Redis相比其他缓存,有一个非常大的优势,就是支持多种数据类型。

数据类型说明string字符串,最简单的k-v存储hashhash格式,value为field和value,适合ID-Detail这样的场景。list简单的list,顺序列表,支持首位或者末尾插入数据set无序list,查找速度快,适合交集、并集、差集处理sorted set有序的set

其实,通过上面的数据类型的特性,基本就能想到合适的应用场景了。

string——适合最简单的k-v存储,类似于memcached的存储结构,短信验证码,配置信息等,就用这种类型来存储。

hash——一般key为ID或者唯一标示,value对应的就是详情了。如商品详情,个人信息详情,新闻详情等。

list——因为list是有序的,比较适合存储一些有序且数据相对固定的数据。如省市区表、字典表等。因为list是有序的,适合根据写入的时间来排序,如:最新的***,消息队列等。

set——可以简单的理解为ID-List的模式,如微博中一个人有哪些好友,set最牛的地方在于,可以对两个set提供交集、并集、差集操作。例如:查找两个人共同的好友等。

Sorted Set——是set的增强版本,增加了一个score参数,自动会根据score的值进行排序。比较适合类似于top 10等不根据插入的时间来排序的数据。

如上所述,虽然Redis不像关系数据库那么复杂的数据结构,但是,也能适合很多场景,比一般的缓存数据结构要多。了解每种数据结构适合的业务场景,不仅有利于提升开发效率,也能有效利用Redis的性能。

 

 

5、为什么要用 Redis 而不用 map/guava 做缓存?

  主要从“高性能”和“高并发”这两点来看待这个问题。

  高性能:

   假如用户第一次访问数据库中的某些数据。这个过程会比较慢,因为是从硬盘上读取的。将该用户访问的数据存在数缓存中,这样下一次再访问这些数据的时候就可以直接从缓存中获取了。操作缓存就是直接操作内存,所以速度相当快。如果数据库中的对应数据改变的之后,同步改变缓存中相应的数据即可!

 

redis设置自增ERR value is not an integer or out of range redis自增id容错处理_缓存_02

 

 高并发:

直接操作缓存能够承受的请求是远远大于直接访问数据库的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样用户的一部分请求会直接到缓存这里而不用经过数据库。

redis设置自增ERR value is not an integer or out of range redis自增id容错处理_Redis_03

 

 

缓存分为本地缓存和分布式缓存。以 Java 为例,使用自带的 map 或者 guava 实现的是本地缓存,最主要的特点是轻量以及快速,生命周期随着 jvm 的销毁而结束,并且在多实例的情况下,每个实例都需要各自保存一份缓存,缓存不具有一致性。使用 redis 或 memcached 之类的称为分布式缓存,在多实例的情况下,各实例共用一份缓存数据,缓存具有一致性。缺点是需要保持 redis 或 memcached服务的高可用,整个程序架构上较为复杂。

 

6、Redis为什么这么快

  1)完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于 HashMap,HashMap 的优势就是查找和操作的时间复杂度都是O(1);

  2)数据结构简单,对数据操作也简单,Redis 中的数据结构是专门进行设计的;

  3)采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;

  4)使用多路 I/O 复用模型,非阻塞 IO;

  5)使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis 直接自己构建了 VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求;  

7、持久化 什么是Redis持久化?

   持久化就是把内存的数据写到磁盘中去,防止服务宕机了内存数据丢失。

 

8、Redis 的持久化机制是什么?各自的优缺点?


Redis 提供两种持久化机制 RDB(默认) 和 AOF 机制:

RDB:是Redis DataBase缩写快照

RDB是Redis默认的持久化方式。按照一定的时间将内存的数据以快照的形式保存到硬盘中,对应产生的数据文件为dump.rdb。通过配置文件中的save参数来定义快照的周期。

redis设置自增ERR value is not an integer or out of range redis自增id容错处理_数据_04

 

 

优点:

1、只有一个文件 dump.rdb,方便持久化。

2、容灾性好,一个文件可以保存到安全的磁盘。

3、性能最大化,fork 子进程来完成写操作,让主进程继续处理命令,所以是 IO 最大化。使用单独子进程来进行持久化,主进程不会进行任何 IO 操作,保证了 redis 的高性能

4.相对于数据集大时,比 AOF 的启动效率更高。

缺点:

1、数据安全性低。RDB 是间隔一段时间进行持久化,如果持久化之间 redis 发生故障,会发生数据丢失。所以这种方式更适合数据要求不严谨的时候)

2、AOF(Append-only file)持久化方式: 是指所有的命令行记录以 redis 命令请 求协议的格式完全持久化存储)保存为 aof 文件。

AOF:持久化

AOF持久化(即Append Only File持久化),则是将Redis执行的每次写命令记录到单独的日志文件中,当重启Redis会重新将持久化的日志中文件恢复数据。

当两种方式同时开启时,数据恢复Redis会优先选择AOF恢复。

redis设置自增ERR value is not an integer or out of range redis自增id容错处理_Redis_05

 

 

优点:

1、数据安全,aof 持久化可以配置 appendfsync 属性,有 always,每进行一次 命令操作就记录到 aof 文件中一次。

2、通过 append 模式写文件,即使中途服务器宕机,可以通过 redis-check-aof 工具解决数据一致性问题。

3、AOF 机制的 rewrite 模式。AOF 文件没被 rewrite 之前(文件过大时会对命令 进行合并重写),可以删除其中的某些命令(比如误操作的 flushall))

缺点:

1、AOF 文件比 RDB 文件大,且恢复速度慢。

2、数据集大的时候,比 rdb 启动效率低。

优缺点是什么?

1、AOF文件比RDB更新频率高,优先使用AOF还原数据。

2、AOF比RDB更安全也更大

3、RDB性能比AOF好

4、如果两个都配了优先加载AOF

如何选择合适的持久化方式

一般来说, 如果想达到足以媲美PostgreSQL的数据安全性,你应该同时使用两种持久化功能。在这种情况下,当 Redis 重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF文件保存的数据集要比RDB文件保存的数据集要完整。

如果你非常关心你的数据, 但仍然可以承受数分钟以内的数据丢失,那么你可以只使用RDB持久化。

有很多用户都只使用AOF持久化,但并不推荐这种方式,因为定时生成RDB快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比AOF恢复的速度要快,除此之外,使用RDB还可以避免AOF程序的bug。

 如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化方式。

9、如何选择合适的持久化方式 Redis持久化数据和缓存怎么做扩容?

  1、如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。

  2、如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。

 

10、过期键的删除策略 Redis的过期键的删除策略, Redis key的过期时间和永久有效分别怎么设置?

   我们都知道,Redis是key-value数据库,我们可以设置Redis中缓存的key的过期时间。Redis的过期策略就是指当Redis中缓存的key过期了,Redis如何处理。

   过期策略通常有以下三种:

   1、定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。

   2、惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。

  3、定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 (expires字典会保存所有设置了过期时间的key的过期时间数据,其中,key是指向键空间中的某个键的指针,value是该键的毫秒精度的UNIX时间戳表示的过期时间。键空间是指该Redis集群中保存的所有键。)

  Redis中同时使用了惰性过期和定期过期两种过期策略。

  Redis key的过期时间和永久有效分别怎么设置?

  EXPIRE和PERSIST命令

 

11、内存淘汰策略 MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据 Redis的内存淘汰策略 ?

   redis内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。

   Redis的内存淘汰策略

   Redis的内存淘汰策略是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据。

   1、oeviction:当内存不足以容纳新写入数据时,新写入操作会报错。

   2、allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。

   3、allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。

   4、volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。

   5、volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。

   6、volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。

  总结

  Redis的内存淘汰策略的选取并不会影响过期的key的处理。内存淘汰策略用于处理内存不足时的需要申请额外空间的数据;过期策略用于处理过期的缓存数据。

  Redis的内存用完了会发生什么?

  如果达到设置的上限,Redis的写命令会返回错误信息(但是读命令还可以正常返回。)或者你可以将Redis当缓存来使用配置淘汰机制,当Redis达到内存上限时会冲刷掉旧的内容。

12、Redis如何做内存优化?

   可以好好利用Hash,list,sorted set,set等集合类型数据,因为通常情况下很多小的Key-Value可以用更紧凑的方式存放到一起。尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该尽可能的将你的数据模型抽象到一个散列表里面。比如你的web系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的key,而是应该把这个用户的所有信息存储到一张散列表里面.

13、Redis回收进程如何工作的?

  1、一个客户端运行了新的命令,添加了新的数据。

  2、Redis检查内存使用情况,如果大于maxmemory的限制, 则根据设定好的策略进行回收。

  3、一个新的命令被执行,等等。

  4、所以我们不断地穿越内存限制的边界,通过不断达到边界然后不断地回收回到边界以下。

     如果一个命令的结果导致大量内存被使用(例如很大的集合的交集保存到一个新的键),不用多久内存限制就会被这个内存使用量超越。

14、Redis回收使用的是什么算法?

    LRU算法

15、线程模型 Redis线程模型 事务 怎么理解Redis事务? 


Redis基于Reactor模式开发了网络事件处理器,这个处理器被称为文件事件处理器(file event handler)。它的组成结构为4部分:多个套接字、IO多路复用程序、文件事件分派器、事件处理器。因为文件事件分派器队列的消费是单线程的,所以Redis才叫单线程模型。

1、文件事件处理器使用 I/O 多路复用(multiplexing)程序来同时监听多个套接字, 并根据套接字目前执行的任务来为套接字关联不同的事件处理器。

2、当被监听的套接字准备好执行连接应答(accept)、读取(read)、写入(write)、关闭(close)等操作时, 与操作相对应的文件事件就会产生, 这时文件事件处理器就会调用套接字之前关联好的事件处理器来处理这些事件。

虽然文件事件处理器以单线程方式运行, 但通过使用 I/O 多路复用程序来监听多个套接字, 文件事件处理器既实现了高性能的网络通信模型, 又可以很好地与 redis 服务器中其他同样以单线程方式运行的模块进行对接, 这保持了 Redis 内部单线程设计的简单性。

16、Redis事务 分布式问题 Redis实现分布式锁 如何解决 Redis 的并发竞争 Key 问题 分布式Redis是前期做还是后期规模上来了再做好?为什么?

事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。

事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执行。

Redis事务 Redis事务的概念:

Redis 事务的本质是一组命令的集合。事务支持一次执行多个命令,一个事务中所有命令都会被序列化。在事务执行过程,会按照顺序串行化执行队列中的命令,其他客户端提交的命令请求不会插入到事务执行命令序列中。

总结说:redis事务就是一次性、顺序性、排他性的执行一个队列中的一系列命令。

(1) 事务提供了一种将多个命令打包,然后一次性、有序地执行的机制。

(2) 多个命令会入队到事务队列中, 然后按先进先出(FIFO)的顺序执行。

(3) 事务在执行过程中不会被中断,当事务队列中的所有命令都被执行完毕之后,事务

才会结束。

(4) 带有WATCH命令的事务会将客户端和被监视的键在数据库的watched_keys字典关联,当键被修改时,程序会将所有监视被修改键的客户端的REDIS_DIRTY_CAS标识打开,服务只有在REDIS_DIRTY_CAS标识没有打开时,才会执行客户端提交的事务,否则服务器拒绝执行事务。

(5) Redis事务不支持回滚机制。

(6) Redis的事务总是具有ACID中的一致性和隔离性,当服务器运行在AOF持久化模式下,并且appendfsync选项的值为always时,事务也具有耐久性。

Redis事务没有隔离级别的概念:

批量操作在发送 EXEC 命令前被放入队列缓存,并不会被实际执行,也就不存在事务内的查询要看到事务里的更新,事务外查询不能看到。

Redis不保证原子性:

Redis中,单条命令是原子性执行的,但事务不保证原子性,且没有回滚。事务中任意命令执行失败,其余的命令仍会被执行。

Redis事务的三个阶段:

  • 开始事务
  • 命令入队
  • 执行事务

Redis事务相关命令:

1、Redis事务功能是通过MULTI、EXEC、DISCARD和WATCH 四个原语实现的

2、Redis会将一个事务中的所有命令序列化,然后按顺序执行。

3、redis 不支持回滚,“Redis 在事务失败时不进行回滚,而是继续执行余下的命令”, 所以 Redis 的内部可以保持简单且快速。

4、如果在一个事务中的命令出现错误,那么所有的命令都不会执行;

5、如果在一个事务中出现运行错误,那么正确的命令会被执行。

6、WATCH 命令可以为 Redis 事务提供 check-and-set (CAS)行为。 可以监控一个或多个键,一旦其中有一个键被修改(或删除),之后的事务就不会执行,监控一直持续到EXEC命令。

7、MULTI命令用于开启一个事务,它总是返回OK。 MULTI执行之后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当EXEC命令被调用时,所有队列中的命令才会被执行。

8、EXEC:执行所有事务块内的命令。返回事务块内所有命令的返回值,按命令执行的先后顺序排列。 当操作被打断时,返回空值 nil 。

9、通过调用DISCARD,客户端可以清空事务队列,并放弃执行事务, 并且客户端会从事务状态中退出。

10、UNWATCH命令可以取消watch对所有key的监控。

分布式问题 Redis实现分布式锁

Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系Redis中可以使用SETNX命令实现分布式锁。

当且仅当 key 不存在,将 key 的值设为 value。 若给定的 key 已经存在,则 SETNX 不做任何动作

SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写。

返回值:设置成功,返回 1 。设置失败,返回 0 。

 

 

redis设置自增ERR value is not an integer or out of range redis自增id容错处理_数据_06

使用SETNX完成同步锁的流程及事项如下:

使用SETNX命令获取锁,若返回0(key已存在,锁已存在)则获取失败,反之获取成功

为了防止获取锁后程序出现异常,导致其他线程/进程调用SETNX命令总是返回0而进入死锁状态,需要为该key设置一个“合理”的过期时间

释放锁,使用DEL命令将锁数据删除

如何解决 Redis 的并发竞争 Key 问题

所谓 Redis 的并发竞争 Key 的问题也就是多个系统同时对一个 key 进行操作,但是最后执行的顺序和我们期望的顺序不同,这样也就导致了结果的不同!

推荐一种方案:分布式锁(zookeeper 和 redis 都可以实现分布式锁)。(如果不存在 Redis 的并发竞争 Key 问题,不要使用分布式锁,这样会影响性能)

基于zookeeper临时有序节点可以实现的分布式锁。大致思想为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。完成业务流程后,删除对应的子节点释放锁。

在实践中,当然是从以可靠性为主。所以首推Zookeeper。

分布式Redis是前期做还是后期规模上来了再做好?为什么? 既然Redis是如此的轻量(单实例只使用1M内存),为防止以后的扩容,最好的办法就是一开始就启动较多实例。即便你只有一台服务器,你也可以一开始就让Redis以分布式的方式运行,使用分区,在同一台服务器上启动多个实例。

一开始就多设置几个Redis实例,例如32或者64个实例,对大多数用户来说这操作起来可能比较麻烦,但是从长久来看做这点牺牲是值得的。

这样的话,当你的数据不断增长,需要更多的Redis服务器时,你需要做的就是仅仅将Redis实例从一台服务迁移到另外一台服务器而已(而不用考虑重新分区的问题)。一旦你添加了另一台服务器,你需要将你一半的Redis实例从第一台机器迁移到第二台机器。

17、分区 Redis是单线程的,如何提高多核CPU的利用率?

  可以在同一个服务器部署多个Redis的实例,并把他们当作不同的服务器来使用,在某些时候,无论如何一个服务器是不够的, 所以,如果你想使用多个CPU,你可以考虑一下分片(shard)。

18、为什么要做Redis分区? 你知道有哪些Redis分区实现方案? Redis分区有什么缺点?

   分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 

  你知道有哪些Redis分区实现方案?

1、客户端分区就是在客户端就已经决定数据会被存储到哪个redis节点或者从哪个redis节点读取。大多数客户端已经实现了客户端分区。

2、代理分区 意味着客户端将请求发送给代理,然后代理决定去哪个节点写数据或者读数据。代理根据分区规则决定请求哪些Redis实例,然后根据Redis的响应结果返回给客户端。redis和memcached的一种代理实现就是Twemproxy

3、查询路由(Query routing) 的意思是客户端随机地请求任意一个redis实例,然后由Redis将请求转发给正确的Redis节点。Redis Cluster实现了一种混合形式的查询路由,但并不是直接将请求从一个redis节点转发到另一个redis节点,而是在客户端的帮助下直接redirected到正确的redis节点。

Redis分区有什么缺点?


1、涉及多个key的操作通常不会被支持。例如你不能对两个集合求交集,因为他们可能被存储到不同的Redis实例(实际上这种情况也有办法,但是不能直接使用交集指令)。

2、同时操作多个key,则不能使用Redis事务.

3、分区使用的粒度是key,不能使用一个非常长的排序key存储一个数据集(The partitioning granularity is the key, so it is not possible to shard a dataset with a single huge key like a very big sorted set).

4、当使用分区的时候,数据处理会非常复杂,例如为了备份你必须从不同的Redis实例和主机同时收集RDB / AOF文件。

5、分区时动态扩容或缩容可能非常复杂。Redis集群在运行时增加或者删除Redis节点,能做到最大程度对用户透明地数据再平衡,但其他一些客户端分区或者代理分区方法则不支持这种特性。然而,有一种预分片的技术也可以较好的解决这个问题。

19、常用工具 Redis支持的Java客户端都有哪些?官方推荐用哪个?

   Redisson、Jedis、lettuce等等,官方推荐使用Redisson。

20、Redis和Redisson有什么关系?

  Redisson是一个高级的分布式协调Redis客服端,能帮助用户在分布式环境中轻松实现一些Java的对象 (Bloom filter, BitSet, Set, SetMultimap, ScoredSortedSet, SortedSet, Map, ConcurrentMap, List, ListMultimap, Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock, ReadWriteLock, AtomicLong, CountDownLatch, Publish / Subscribe, HyperLogLog)。

21、Jedis与Redisson对比有什么优缺点?

   Jedis是Redis的Java实现的客户端,其API提供了比较全面的Redis命令的支持;Redisson实现了分布式和可扩展的Java数据结构,和Jedis相比,功能较为简单,不支持字符串操作,不支持排序、事务、管道、分区等Redis特性。Redisson的宗旨是促进使用者对Redis的关注分离,从而让使用者能够将精力更集中地放在处理业务逻辑上。

22、其他问题 Redis与Memcached的区别 Redis如何做大量数据插入?


两者都是非关系型内存键值数据库,现在公司一般都是用 Redis 来实现缓存,而且 Redis 自身也越来越强大了!Redis 与 Memcached 主要有以下不同:

 

 

redis设置自增ERR value is not an integer or out of range redis自增id容错处理_数据_07

 

 

redis设置自增ERR value is not an integer or out of range redis自增id容错处理_数据_08

(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型

(2) redis的速度比memcached快很多

(3) redis可以持久化其数据

Redis如何做大量数据插入?

Redis2.6开始redis-cli支持一种新的被称之为pipe mode的新模式用于执行大量数据插入工作。

24、如何保证缓存与数据库双写时的数据一致性?


你只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题?

一般来说,就是如果你的系统不是严格要求缓存+数据库必须一致性的话,缓存可以稍微的跟数据库偶尔有不一致的情况,最好不要做这个方案,读请求和写请求串行化,串到一个内存队列里去,这样就可以保证一定不会出现不一致的情况

串行化之后,就会导致系统的吞吐量会大幅度的降低,用比正常情况下多几倍的机器去支撑线上的一个请求。

还有一种方式就是可能会暂时产生不一致的情况,但是发生的几率特别小,就是先更新数据库,然后再删除缓存。

25、Redis常见性能问题和解决方案?

  

1、Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化。

2、如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。

3、为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内。

5、尽量避免在压力较大的主库上增加从库

6、为了Master的稳定性,主从复制不要用图状结构,用单向链表结构更稳定,即主从关系为:Master<–Slave1<–Slave2<–Slave3…,这样的结构也方便解决单点故障问题,实现Slave对Master的替换,也即,如果Master挂了,可以立马启用Slave1做Master,其他不变。