1.maven依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>flink-connector-redis_2.11</artifactId>
<version>1.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-elasticsearch6_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.44</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-csv</artifactId>
<version>1.10.1</version>
</dependency>
2.sensor.txt
sensor_1,1547718199,35.8
sensor_6,1547718201,15.4
sensor_7,1547718202,6.7
sensor_10,1547718205,38.1
sensor_1,1547718207,36.3
sensor_1,1547718209,32.8
sensor_1,1547718212,37.1
3.bean
// 传感器温度读数的数据类型
public class SensorReading {
// 属性:id,时间戳,温度值
private String id;
private Long timestamp;
private Double temperature;
public SensorReading() {
}
public SensorReading(String id, Long timestamp, Double temperature) {
this.id = id;
this.timestamp = timestamp;
this.temperature = temperature;
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public Long getTimestamp() {
return timestamp;
}
public void setTimestamp(Long timestamp) {
this.timestamp = timestamp;
}
public Double getTemperature() {
return temperature;
}
public void setTemperature(Double temperature) {
this.temperature = temperature;
}
@Override
public String toString() {
return "SensorReading{" +
"id='" + id + '\'' +
", timestamp=" + timestamp +
", temperature=" + temperature +
'}';
}
}
4.source
public class SourceTest1_Collection {
public static void main(String[] args) throws Exception {
//创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
//从集合中读取数据
DataStream<SensorReading> dataStream = env.fromCollection(Arrays.asList(
new SensorReading("sensor_1", 1547718199L, 35.8),
new SensorReading("sensor_6", 1547718201L, 15.4),
new SensorReading("sensor_7", 1547718202L, 6.7),
new SensorReading("sensor_10", 1547718205L, 38.1)
));
DataStream<Integer> integerDataStream = env.fromElements(1,2,4,67,189);
//打印输出
dataStream.print("data");
integerDataStream.print("int");
//执行
env.execute();
}
}
public class SourceTest2_File {
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
DataStream<String> dataStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");
// 打印输出
dataStream.print();
env.execute();
}
}
public class SourceTest3_Kafka {
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "consumer-group");
properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("auto.offset.reset", "latest");
// 从文件读取数据
DataStream<String> dataStream = env.addSource( new FlinkKafkaConsumer011<String>("sensor", new SimpleStringSchema(), properties));
// 打印输出
dataStream.print();
env.execute();
}
}
public class SourceTest4_UDF {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
DataStream<SensorReading> dataStream = env.addSource( new MySensorSource() );
// 打印输出
dataStream.print();
env.execute();
}
//实现自定义的SourceFunction
public static class MySensorSource implements SourceFunction<SensorReading> {
//定义一个标识位,用来控制数据的产生
private boolean running = true;
@Override
public void run(SourceContext<SensorReading> ctx) throws Exception {
//定义一个随机数发生器
Random random = new Random();
//设置10个传感器的初始温度
HashMap<String, Double> sensorTempMap = new HashMap<>();
for(int i = 0; i< 10; i++) {
sensorTempMap.put("sensor_"+(i+1),60+random.nextGaussian()*20);
}
while (running) {
for(String sensorId : sensorTempMap.keySet()) {
// 在当前温度基础上随机波动
Double newtemp = sensorTempMap.get(sensorId) + random.nextGaussian();
sensorTempMap.put(sensorId,newtemp);
ctx.collect(new SensorReading(sensorId,System.currentTimeMillis(),newtemp));
}
//控制输出频率
Thread.sleep(2000L);
}
}
@Override
public void cancel() {
running = false;
}
}
}
5.transform
public class TransformTest1_Base {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");
//1.map,把String转换成长度输出
DataStream<Integer> mapStream = inputStream.map(new MapFunction<String, Integer>() {
@Override
public Integer map(String value) throws Exception {
return value.length();
}
});
//2. flatmap,按逗号分字段
DataStream<String> flatMapStream = inputStream.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out) throws Exception {
String[] fields = value.split(",");
for(String field : fields) {
out.collect(field);
}
}
});
// 3. filter, 筛选sensor_1开头的id对应的数据
DataStream<String> filterStream = inputStream.filter(new FilterFunction<String>() {
@Override
public boolean filter(String value) throws Exception {
return value.startsWith("sensor_1");
}
});
// 打印输出
mapStream.print("map");
flatMapStream.print("flatMap");
filterStream.print("filter");
env.execute();
}
}
public class TransformTest2_RollingAggregation {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(4);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");
// 转换成SensorReading类型
// DataStream<SensorReading> dataStream = inputStream.map(new MapFunction<String, SensorReading>() {
// @Override
// public SensorReading map(String value) throws Exception {
// String[] fields = value.split(",");
// return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
// }
// });
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
} );
// 分组
KeyedStream<SensorReading, Tuple> keyedStream = dataStream.keyBy("id");
KeyedStream<SensorReading, String> keyedStream1 = dataStream.keyBy(data -> data.getId());
DataStream<Long> dataStream1 = env.fromElements(1L, 34L, 4L, 657L, 23L);
KeyedStream<Long, Integer> keyedStream2 = dataStream1.keyBy(new KeySelector<Long, Integer>() {
@Override
public Integer getKey(Long value) throws Exception {
return value.intValue() % 2;
}
});
// KeyedStream<SensorReading, String> keyedStream1 = dataStream.keyBy(SensorReading::getId);
// 滚动聚合,取当前最大的温度值
DataStream<SensorReading> resultStream = keyedStream.maxBy("temperature");
resultStream.print("result");
keyedStream1.print("key1");
keyedStream2.sum(0).print("key2");
env.execute();
}
}
public class TransformTest3_Reduce {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
// 分组
KeyedStream<SensorReading, Tuple> keyedStream = dataStream.keyBy("id");
// reduce聚合,取最大的温度值,以及当前最新的时间戳
SingleOutputStreamOperator<SensorReading> resultStream = keyedStream.reduce(new ReduceFunction<SensorReading>() {
@Override
public SensorReading reduce(SensorReading value1, SensorReading value2) throws Exception {
return new SensorReading(value1.getId(), value2.getTimestamp(), Math.max(value1.getTemperature(), value2.getTemperature()));
}
});
keyedStream.reduce( (curState, newData) -> {
return new SensorReading(curState.getId(), newData.getTimestamp(), Math.max(curState.getTemperature(), newData.getTemperature()));
});
resultStream.print();
env.execute();
}
}
public class TransformTest4_MultipleStreams {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");
// 转换成SensorReading
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
} );
// 1. 分流,按照温度值30度为界分为两条流
SplitStream<SensorReading> splitStream = dataStream.split(new OutputSelector<SensorReading>() {
@Override
public Iterable<String> select(SensorReading value) {
return (value.getTemperature() > 30) ? Collections.singletonList("high") : Collections.singletonList("low");
}
});
DataStream<SensorReading> highTempStream = splitStream.select("high");
DataStream<SensorReading> lowTempStream = splitStream.select("low");
DataStream<SensorReading> allTempStream = splitStream.select("high", "low");
highTempStream.print("high");
lowTempStream.print("low");
allTempStream.print("all");
// 2. 合流 connect,将高温流转换成二元组类型,与低温流连接合并之后,输出状态信息
DataStream<Tuple2<String, Double>> warningStream = highTempStream.map(new MapFunction<SensorReading, Tuple2<String, Double>>() {
@Override
public Tuple2<String, Double> map(SensorReading value) throws Exception {
return new Tuple2<>(value.getId(), value.getTemperature());
}
});
ConnectedStreams<Tuple2<String, Double>, SensorReading> connectedStreams = warningStream.connect(lowTempStream);
DataStream<Object> resultStream = connectedStreams.map(new CoMapFunction<Tuple2<String, Double>, SensorReading, Object>() {
@Override
public Object map1(Tuple2<String, Double> value) throws Exception {
return new Tuple3<>(value.f0, value.f1, "high temp warning");
}
@Override
public Object map2(SensorReading value) throws Exception {
return new Tuple2<>(value.getId(), "normal");
}
});
resultStream.print();
// 3. union联合多条流
// warningStream.union(lowTempStream);
highTempStream.union(lowTempStream, allTempStream);
env.execute();
}
}
public class TransformTest5_RichFunction {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(4);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
DataStream<Tuple2<String, Integer>> resultStream = dataStream.map( new MyMapper() );
resultStream.print();
env.execute();
}
public static class MyMapper0 implements MapFunction<SensorReading, Tuple2<String, Integer>>{
@Override
public Tuple2<String, Integer> map(SensorReading value) throws Exception {
return new Tuple2<>(value.getId(), value.getId().length());
}
}
// 实现自定义富函数类
public static class MyMapper extends RichMapFunction<SensorReading, Tuple2<String, Integer>>{
@Override
public Tuple2<String, Integer> map(SensorReading value) throws Exception {
// getRuntimeContext().getState();
return new Tuple2<>(value.getId(), getRuntimeContext().getIndexOfThisSubtask());
}
@Override
public void open(Configuration parameters) throws Exception {
// 初始化工作,一般是定义状态,或者建立数据库连接
System.out.println("open");
}
@Override
public void close() throws Exception {
// 一般是关闭连接和清空状态的收尾操作
System.out.println("close");
}
}
}
public class TransformTest6_Partition {
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(4);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
dataStream.print("input");
// 1. shuffle
DataStream<String> shuffleStream = inputStream.shuffle();
// shuffleStream.print("shuffle");
// 2. keyBy
// dataStream.keyBy("id").print("keyBy");
// 3. global
dataStream.global().print("global");
env.execute();
}
}
6.sink
public class SinkTest1_Kafka {
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// // 从文件读取数据
// DataStream<String> inputStream = env.readTextFile("D:\workspace\flinkworld\src\main\resources\sensor.txt");
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "consumer-group");
properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("auto.offset.reset", "latest");
// 从文件读取数据
DataStream<String> inputStream = env.addSource( new FlinkKafkaConsumer011<String>("sensor", new SimpleStringSchema(), properties));
// 转换成SensorReading类型
DataStream<String> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2])).toString();
});
dataStream.addSink( new FlinkKafkaProducer011<String>("localhost:9092", "sinktest", new SimpleStringSchema()));
env.execute();
}
}
public class SinkTest2_Redis {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
// 定义jedis连接配置
FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder()
.setHost("localhost")
.setPort(6379)
.build();
dataStream.addSink( new RedisSink<>(config, new MyRedisMapper()));
env.execute();
}
// 自定义RedisMapper
public static class MyRedisMapper implements RedisMapper<SensorReading>{
// 定义保存数据到redis的命令,存成Hash表,hset sensor_temp id temperature
@Override
public RedisCommandDescription getCommandDescription() {
return new RedisCommandDescription(RedisCommand.HSET, "sensor_temp");
}
@Override
public String getKeyFromData(SensorReading data) {
return data.getId();
}
@Override
public String getValueFromData(SensorReading data) {
return data.getTemperature().toString();
}
}
}
public class SinkTest3_Es {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
// 定义es的连接配置
ArrayList<HttpHost> httpHosts = new ArrayList<>();
httpHosts.add(new HttpHost("localhost", 9200));
dataStream.addSink(new ElasticsearchSink.Builder<SensorReading>(httpHosts, new MyEsSinkFunction()).build());
env.execute();
}
// 实现自定义的ES写入操作
public static class MyEsSinkFunction implements ElasticsearchSinkFunction<SensorReading>{
@Override
public void process(SensorReading element, RuntimeContext ctx, RequestIndexer indexer) {
// 定义写入的数据source
HashMap<String, String> dataSource = new HashMap<>();
dataSource.put("id", element.getId());
dataSource.put("temp", element.getTemperature().toString());
dataSource.put("ts", element.getTimestamp().toString());
// 创建请求,作为向es发起的写入命令
IndexRequest indexRequest = Requests.indexRequest()
.index("sensor")
.type("readingdata")
.source(dataSource);
// 用index发送请求
indexer.add(indexRequest);
}
}
}
public class SinkTest4_Jdbc {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
// DataStream<String> inputStream = env.readTextFile("D:\workspace\flinkworld\src\main\resources\sensor.txt");
//
// // 转换成SensorReading类型
// DataStream<SensorReading> dataStream = inputStream.map(line -> {
// String[] fields = line.split(",");
// return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
// });
DataStream<SensorReading> dataStream = env.addSource(new SourceTest4_UDF.MySensorSource());
dataStream.addSink(new MyJdbcSink());
env.execute();
}
// 实现自定义的SinkFunction
public static class MyJdbcSink extends RichSinkFunction<SensorReading> {
// 声明连接和预编译语句
Connection connection = null;
PreparedStatement insertStmt = null;
PreparedStatement updateStmt = null;
@Override
public void open(Configuration parameters) throws Exception {
connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "123456");
insertStmt = connection.prepareStatement("insert into sensor_temp (id, temp) values (?, ?)");
updateStmt = connection.prepareStatement("update sensor_temp set temp = ? where id = ?");
}
// 每来一条数据,调用连接,执行sql
@Override
public void invoke(SensorReading value, Context context) throws Exception {
// 直接执行更新语句,如果没有更新那么就插入
updateStmt.setDouble(1, value.getTemperature());
updateStmt.setString(2, value.getId());
updateStmt.execute();
if( updateStmt.getUpdateCount() == 0 ){
insertStmt.setString(1, value.getId());
insertStmt.setDouble(2, value.getTemperature());
insertStmt.execute();
}
}
@Override
public void close() throws Exception {
insertStmt.close();
updateStmt.close();
connection.close();
}
}
}