1.maven依赖

<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.10.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.10.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka-0.11_2.12</artifactId>
            <version>1.10.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.bahir</groupId>
            <artifactId>flink-connector-redis_2.11</artifactId>
            <version>1.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-elasticsearch6_2.12</artifactId>
            <version>1.10.1</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.44</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-statebackend-rocksdb_2.12</artifactId>
            <version>1.10.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_2.12</artifactId>
            <version>1.10.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.12</artifactId>
            <version>1.10.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>1.10.1</version>
        </dependency>

2.sensor.txt

sensor_1,1547718199,35.8
sensor_6,1547718201,15.4
sensor_7,1547718202,6.7
sensor_10,1547718205,38.1
sensor_1,1547718207,36.3
sensor_1,1547718209,32.8
sensor_1,1547718212,37.1

 

3.bean

// 传感器温度读数的数据类型
public class SensorReading {
    // 属性:id,时间戳,温度值
    private String id;
    private Long timestamp;
    private Double temperature;

    public SensorReading() {
    }

    public SensorReading(String id, Long timestamp, Double temperature) {
        this.id = id;
        this.timestamp = timestamp;
        this.temperature = temperature;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public Long getTimestamp() {
        return timestamp;
    }

    public void setTimestamp(Long timestamp) {
        this.timestamp = timestamp;
    }

    public Double getTemperature() {
        return temperature;
    }

    public void setTemperature(Double temperature) {
        this.temperature = temperature;
    }

    @Override
    public String toString() {
        return "SensorReading{" +
                "id='" + id + '\'' +
                ", timestamp=" + timestamp +
                ", temperature=" + temperature +
                '}';
    }
}

 

4.source

public class SourceTest1_Collection {
    public static void main(String[] args) throws Exception {
        //创建执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //从集合中读取数据
        DataStream<SensorReading> dataStream = env.fromCollection(Arrays.asList(
                new SensorReading("sensor_1", 1547718199L, 35.8),
                new SensorReading("sensor_6", 1547718201L, 15.4),
                new SensorReading("sensor_7", 1547718202L, 6.7),
                new SensorReading("sensor_10", 1547718205L, 38.1)
        ));
        DataStream<Integer> integerDataStream = env.fromElements(1,2,4,67,189);

        //打印输出
        dataStream.print("data");
        integerDataStream.print("int");

        //执行
        env.execute();

    }
}
public class SourceTest2_File {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 从文件读取数据
        DataStream<String> dataStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");

        // 打印输出
        dataStream.print();

        env.execute();
    }
}
public class SourceTest3_Kafka {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("group.id", "consumer-group");
        properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        properties.setProperty("auto.offset.reset", "latest");

        // 从文件读取数据
        DataStream<String> dataStream = env.addSource( new FlinkKafkaConsumer011<String>("sensor", new SimpleStringSchema(), properties));

        // 打印输出
        dataStream.print();

        env.execute();
    }
}
public class SourceTest4_UDF {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 从文件读取数据
        DataStream<SensorReading> dataStream = env.addSource( new MySensorSource() );

        // 打印输出
        dataStream.print();

        env.execute();

    }
    //实现自定义的SourceFunction
    public static class MySensorSource implements SourceFunction<SensorReading> {
        //定义一个标识位,用来控制数据的产生
        private boolean running = true;
        @Override
        public void run(SourceContext<SensorReading> ctx) throws Exception {
            //定义一个随机数发生器
            Random random = new Random();

            //设置10个传感器的初始温度
            HashMap<String, Double> sensorTempMap = new HashMap<>();
            for(int i = 0; i< 10; i++) {
                sensorTempMap.put("sensor_"+(i+1),60+random.nextGaussian()*20);
            }

            while (running) {
                for(String sensorId : sensorTempMap.keySet()) {
                    // 在当前温度基础上随机波动
                    Double newtemp = sensorTempMap.get(sensorId) + random.nextGaussian();
                    sensorTempMap.put(sensorId,newtemp);
                    ctx.collect(new SensorReading(sensorId,System.currentTimeMillis(),newtemp));
                }
                //控制输出频率
                Thread.sleep(2000L);
            }

        }

        @Override
        public void cancel() {
            running = false;
        }
    }
}

 

5.transform

public class TransformTest1_Base {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 从文件读取数据
        DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");

        //1.map,把String转换成长度输出
        DataStream<Integer> mapStream = inputStream.map(new MapFunction<String, Integer>() {
            @Override
            public Integer map(String value) throws Exception {
                return value.length();
            }
        });

        //2. flatmap,按逗号分字段
        DataStream<String> flatMapStream = inputStream.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String value, Collector<String> out) throws Exception {
                String[] fields = value.split(",");
                for(String field : fields) {
                    out.collect(field);
                }
            }
        });

        // 3. filter, 筛选sensor_1开头的id对应的数据
        DataStream<String> filterStream = inputStream.filter(new FilterFunction<String>() {
            @Override
            public boolean filter(String value) throws Exception {
                return value.startsWith("sensor_1");
            }
        });

        // 打印输出
        mapStream.print("map");
        flatMapStream.print("flatMap");
        filterStream.print("filter");

        env.execute();
    }
}
public class TransformTest2_RollingAggregation {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(4);

        // 从文件读取数据
        DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");

        // 转换成SensorReading类型
//        DataStream<SensorReading> dataStream = inputStream.map(new MapFunction<String, SensorReading>() {
//            @Override
//            public SensorReading map(String value) throws Exception {
//                String[] fields = value.split(",");
//                return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
//            }
//        });

        DataStream<SensorReading> dataStream = inputStream.map(line -> {
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        } );

        // 分组
        KeyedStream<SensorReading, Tuple> keyedStream = dataStream.keyBy("id");
        KeyedStream<SensorReading, String> keyedStream1 = dataStream.keyBy(data -> data.getId());

        DataStream<Long> dataStream1 = env.fromElements(1L, 34L, 4L, 657L, 23L);
        KeyedStream<Long, Integer> keyedStream2 = dataStream1.keyBy(new KeySelector<Long, Integer>() {
            @Override
            public Integer getKey(Long value) throws Exception {
                return value.intValue() % 2;
            }
        });

        //        KeyedStream<SensorReading, String> keyedStream1 = dataStream.keyBy(SensorReading::getId);

        // 滚动聚合,取当前最大的温度值
        DataStream<SensorReading> resultStream = keyedStream.maxBy("temperature");

        resultStream.print("result");

        keyedStream1.print("key1");
        keyedStream2.sum(0).print("key2");
        env.execute();
    }
}
public class TransformTest3_Reduce {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 从文件读取数据
        DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");

        // 转换成SensorReading类型
        DataStream<SensorReading> dataStream = inputStream.map(line -> {
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        });

        // 分组
        KeyedStream<SensorReading, Tuple> keyedStream = dataStream.keyBy("id");

        // reduce聚合,取最大的温度值,以及当前最新的时间戳
        SingleOutputStreamOperator<SensorReading> resultStream = keyedStream.reduce(new ReduceFunction<SensorReading>() {
            @Override
            public SensorReading reduce(SensorReading value1, SensorReading value2) throws Exception {
                return new SensorReading(value1.getId(), value2.getTimestamp(), Math.max(value1.getTemperature(), value2.getTemperature()));
            }
        });

        keyedStream.reduce( (curState, newData) -> {
            return new SensorReading(curState.getId(), newData.getTimestamp(), Math.max(curState.getTemperature(), newData.getTemperature()));
        });

        resultStream.print();
        env.execute();
    }
}
public class TransformTest4_MultipleStreams {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 从文件读取数据
        DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");

        // 转换成SensorReading
        DataStream<SensorReading> dataStream = inputStream.map(line -> {
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        } );

        // 1. 分流,按照温度值30度为界分为两条流
        SplitStream<SensorReading> splitStream = dataStream.split(new OutputSelector<SensorReading>() {
            @Override
            public Iterable<String> select(SensorReading value) {
                return (value.getTemperature() > 30) ? Collections.singletonList("high") : Collections.singletonList("low");
            }
        });

        DataStream<SensorReading> highTempStream = splitStream.select("high");
        DataStream<SensorReading> lowTempStream = splitStream.select("low");
        DataStream<SensorReading> allTempStream = splitStream.select("high", "low");

        highTempStream.print("high");
        lowTempStream.print("low");
        allTempStream.print("all");

        // 2. 合流 connect,将高温流转换成二元组类型,与低温流连接合并之后,输出状态信息
        DataStream<Tuple2<String, Double>> warningStream = highTempStream.map(new MapFunction<SensorReading, Tuple2<String, Double>>() {
            @Override
            public Tuple2<String, Double> map(SensorReading value) throws Exception {
                return new Tuple2<>(value.getId(), value.getTemperature());
            }
        });

        ConnectedStreams<Tuple2<String, Double>, SensorReading> connectedStreams = warningStream.connect(lowTempStream);

        DataStream<Object> resultStream = connectedStreams.map(new CoMapFunction<Tuple2<String, Double>, SensorReading, Object>() {
            @Override
            public Object map1(Tuple2<String, Double> value) throws Exception {
                return new Tuple3<>(value.f0, value.f1, "high temp warning");
            }

            @Override
            public Object map2(SensorReading value) throws Exception {
                return new Tuple2<>(value.getId(), "normal");
            }
        });

        resultStream.print();

        // 3. union联合多条流
//        warningStream.union(lowTempStream);
        highTempStream.union(lowTempStream, allTempStream);

        env.execute();
    }
}
public class TransformTest5_RichFunction {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(4);

        // 从文件读取数据
        DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");

        // 转换成SensorReading类型
        DataStream<SensorReading> dataStream = inputStream.map(line -> {
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        });

        DataStream<Tuple2<String, Integer>> resultStream = dataStream.map( new MyMapper() );

        resultStream.print();

        env.execute();
    }

    public static class MyMapper0 implements MapFunction<SensorReading, Tuple2<String, Integer>>{
        @Override
        public Tuple2<String, Integer> map(SensorReading value) throws Exception {
            return new Tuple2<>(value.getId(), value.getId().length());
        }
    }

    // 实现自定义富函数类
    public static class MyMapper extends RichMapFunction<SensorReading, Tuple2<String, Integer>>{
        @Override
        public Tuple2<String, Integer> map(SensorReading value) throws Exception {
//            getRuntimeContext().getState();
            return new Tuple2<>(value.getId(), getRuntimeContext().getIndexOfThisSubtask());
        }

        @Override
        public void open(Configuration parameters) throws Exception {
            // 初始化工作,一般是定义状态,或者建立数据库连接
            System.out.println("open");
        }

        @Override
        public void close() throws Exception {
            // 一般是关闭连接和清空状态的收尾操作
            System.out.println("close");
        }
    }
}
public class TransformTest6_Partition {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(4);

        // 从文件读取数据
        DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");

        // 转换成SensorReading类型
        DataStream<SensorReading> dataStream = inputStream.map(line -> {
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        });

        dataStream.print("input");

        // 1. shuffle
        DataStream<String> shuffleStream = inputStream.shuffle();

//        shuffleStream.print("shuffle");

        // 2. keyBy

//        dataStream.keyBy("id").print("keyBy");

        // 3. global
        dataStream.global().print("global");

        env.execute();
    }
}

 

6.sink

public class SinkTest1_Kafka {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

//        // 从文件读取数据
//        DataStream<String> inputStream = env.readTextFile("D:\workspace\flinkworld\src\main\resources\sensor.txt");

        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("group.id", "consumer-group");
        properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        properties.setProperty("auto.offset.reset", "latest");

        // 从文件读取数据
        DataStream<String> inputStream = env.addSource( new FlinkKafkaConsumer011<String>("sensor", new SimpleStringSchema(), properties));

        // 转换成SensorReading类型
        DataStream<String> dataStream = inputStream.map(line -> {
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2])).toString();
        });

        dataStream.addSink( new FlinkKafkaProducer011<String>("localhost:9092", "sinktest", new SimpleStringSchema()));

        env.execute();
    }
}
public class SinkTest2_Redis {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 从文件读取数据
        DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");

        // 转换成SensorReading类型
        DataStream<SensorReading> dataStream = inputStream.map(line -> {
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        });

        // 定义jedis连接配置
        FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder()
                .setHost("localhost")
                .setPort(6379)
                .build();

        dataStream.addSink( new RedisSink<>(config, new MyRedisMapper()));

        env.execute();
    }

    // 自定义RedisMapper
    public static class MyRedisMapper implements RedisMapper<SensorReading>{
        // 定义保存数据到redis的命令,存成Hash表,hset sensor_temp id temperature
        @Override
        public RedisCommandDescription getCommandDescription() {
            return new RedisCommandDescription(RedisCommand.HSET, "sensor_temp");
        }

        @Override
        public String getKeyFromData(SensorReading data) {
            return data.getId();
        }

        @Override
        public String getValueFromData(SensorReading data) {
            return data.getTemperature().toString();
        }
    }
}
public class SinkTest3_Es {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 从文件读取数据
        DataStream<String> inputStream = env.readTextFile("D:\\workspace\\flinkworld\\src\\main\\resources\\sensor.txt");

        // 转换成SensorReading类型
        DataStream<SensorReading> dataStream = inputStream.map(line -> {
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        });

        // 定义es的连接配置
        ArrayList<HttpHost> httpHosts = new ArrayList<>();
        httpHosts.add(new HttpHost("localhost", 9200));

        dataStream.addSink(new ElasticsearchSink.Builder<SensorReading>(httpHosts, new MyEsSinkFunction()).build());

        env.execute();
    }

    // 实现自定义的ES写入操作
    public static class MyEsSinkFunction implements ElasticsearchSinkFunction<SensorReading>{
        @Override
        public void process(SensorReading element, RuntimeContext ctx, RequestIndexer indexer) {
            // 定义写入的数据source
            HashMap<String, String> dataSource = new HashMap<>();
            dataSource.put("id", element.getId());
            dataSource.put("temp", element.getTemperature().toString());
            dataSource.put("ts", element.getTimestamp().toString());

            // 创建请求,作为向es发起的写入命令
            IndexRequest indexRequest = Requests.indexRequest()
                    .index("sensor")
                    .type("readingdata")
                    .source(dataSource);

            // 用index发送请求
            indexer.add(indexRequest);
        }
    }
}
public class SinkTest4_Jdbc {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 从文件读取数据
//        DataStream<String> inputStream = env.readTextFile("D:\workspace\flinkworld\src\main\resources\sensor.txt");
//
//        // 转换成SensorReading类型
//        DataStream<SensorReading> dataStream = inputStream.map(line -> {
//            String[] fields = line.split(",");
//            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
//        });

        DataStream<SensorReading> dataStream = env.addSource(new SourceTest4_UDF.MySensorSource());

        dataStream.addSink(new MyJdbcSink());

        env.execute();
    }

    // 实现自定义的SinkFunction
    public static class MyJdbcSink extends RichSinkFunction<SensorReading> {
        // 声明连接和预编译语句
        Connection connection = null;
        PreparedStatement insertStmt = null;
        PreparedStatement updateStmt = null;

        @Override
        public void open(Configuration parameters) throws Exception {
            connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "123456");
            insertStmt = connection.prepareStatement("insert into sensor_temp (id, temp) values (?, ?)");
            updateStmt = connection.prepareStatement("update sensor_temp set temp = ? where id = ?");
        }

        // 每来一条数据,调用连接,执行sql
        @Override
        public void invoke(SensorReading value, Context context) throws Exception {
            // 直接执行更新语句,如果没有更新那么就插入
            updateStmt.setDouble(1, value.getTemperature());
            updateStmt.setString(2, value.getId());
            updateStmt.execute();
            if( updateStmt.getUpdateCount() == 0 ){
                insertStmt.setString(1, value.getId());
                insertStmt.setDouble(2, value.getTemperature());
                insertStmt.execute();
            }
        }

        @Override
        public void close() throws Exception {
            insertStmt.close();
            updateStmt.close();
            connection.close();
        }
    }
}