爬虫的本质就是模拟client频繁请求server,获取响应数据,对响应数据进行解析处理。常规的串行方式同步阻塞执行,必须等待一个任务处理完后才能之后才能继续下一个,这样效率就非常低。最常用的聚焦爬虫对数据处理的IO操作(阻塞)相对密集,因此需要考虑使用异步方案解决。

 

1.同步串行:提交任务之后,只有等待这个任务执行完毕返回结果才会继续执行下一个,这样效率比较低下!

python 异步爬虫 爬虫异步请求_多进程

python 异步爬虫 爬虫异步请求_html_02

1 '''
 2 同步串爬取
 3 '''
 4 import os
 5 import time
 6 import requests
 7 headers={
 8 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'
 9 }
10 urls = [
11     ('百度知道','https://zhidao.baidu.com/daily?fr=daohang'),
12     ('新浪', 'https://www.sina.com.cn/'),
13     ('腾讯网', 'https://www.qq.com/'),
14     ('简书','https://www.jianshu.com/'),
15     ('今日头条','https://www.toutiao.com/'),
16     ('新浪财经','https://finance.sina.com.cn/'),
17     ('东方财富','http://www.eastmoney.com/'),
18     ('襄阳家教网','http://www.jiajiao100.com/'),
19 ]
20 
21 #同步串行爬取
22 start=time.time()
23 for url_info in urls:
24     url=url_info[1]
25     path=os.path.join('response',url_info[0]+'.html')
26     response=requests.get(url,headers=headers)
27     response.encoding='utf-8'
28     with open(path,'w',encoding='utf-8')as f:
29         f.write(response.text)
30 t=time.time()-start
31 print(t)#4.652341365814209

同步串行

python 异步爬虫 爬虫异步请求_多进程

python 异步爬虫 爬虫异步请求_html_02

1 '''
 2 异步多进程
 3 '''
 4 import os
 5 import time
 6 import requests
 7 from multiprocessing import Process
 8 headers={
 9 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'
10 }
11 urls = [
12     ('百度知道','https://zhidao.baidu.com/daily?fr=daohang'),
13     ('新浪', 'https://www.sina.com.cn/'),
14     ('腾讯网', 'https://www.qq.com/'),
15     ('简书','https://www.jianshu.com/'),
16     ('今日头条','https://www.toutiao.com/'),
17     ('新浪财经','https://finance.sina.com.cn/'),
18     ('东方财富','http://www.eastmoney.com/'),
19     ('襄阳家教网','http://www.jiajiao100.com/'),
20 ]
21 
22 def get_html(url_info):
23     print(os.getppid(),os.getpid())
24     url = url_info[1]
25     path = os.path.join('response', url_info[0] + '.html')
26     response = requests.get(url, headers=headers)
27     response.encoding = 'utf-8'
28     with open(path, 'w', encoding='utf-8')as f:
29         f.write(response.text)
30 
31 
32 if __name__ == '__main__':
33     start = time.time()
34     p_list=[]
35     for url_info in urls:
36         p=Process(target=get_html,args=(url_info,))
37         p_list.append(p)
38         p.start()
39     for p in p_list:
40         p.join()
41     t=time.time()-start
42     print(t)#3.1241235733032227

异步多进程

python 异步爬虫 爬虫异步请求_多进程

python 异步爬虫 爬虫异步请求_html_02

1 '''
 2 异步进程池
 3 '''
 4 import os
 5 import time
 6 import requests
 7 from concurrent.futures import ProcessPoolExecutor
 8 headers={
 9 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'
10 }
11 urls = [
12     ('百度知道', 'https://zhidao.baidu.com/daily?fr=daohang'),
13     ('新浪', 'https://www.sina.com.cn/'),
14     ('腾讯网', 'https://www.qq.com/'),
15     ('简书', 'https://www.jianshu.com/'),
16     ('今日头条', 'https://www.toutiao.com/'),
17     ('新浪财经', 'https://finance.sina.com.cn/'),
18     ('东方财富', 'http://www.eastmoney.com/'),
19     ('襄阳家教网', 'http://www.jiajiao100.com/'),
20 ]
21 
22 
23 def get_html(url_info):
24     print(os.getppid(), os.getpid())
25     url = url_info[1]
26     path = os.path.join('response', url_info[0] + '.html')
27     response = requests.get(url, headers=headers)
28     return response,path
29 
30 
31 def done_callback(task):
32     path=task.result()[1]
33     response = task.result()[0]
34     response.encoding = 'utf-8'
35     with open(path, 'w', encoding='utf-8')as f:
36         f.write(response.text)
37 
38 if __name__ == '__main__':
39     start = time.time()
40     ps = ProcessPoolExecutor(8)
41     for url_info in urls:
42         task = ps.submit(get_html, url_info)
43         task.add_done_callback(done_callback)
44     ps.shutdown()
45     t = time.time() - start
46     print(t)  #3.589127779006958

异步进程池

python 异步爬虫 爬虫异步请求_多进程

python 异步爬虫 爬虫异步请求_html_02

1 '''
 2 异步多线程
 3 '''
 4 import os
 5 import time
 6 import requests
 7 from threading import Thread,activeCount
 8 headers={
 9 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'
10 }
11 urls = [
12     ('百度知道','https://zhidao.baidu.com/daily?fr=daohang'),
13     ('新浪', 'https://www.sina.com.cn/'),
14     ('腾讯网', 'https://www.qq.com/'),
15     ('简书','https://www.jianshu.com/'),
16     ('今日头条','https://www.toutiao.com/'),
17     ('新浪财经','https://finance.sina.com.cn/'),
18     ('东方财富','http://www.eastmoney.com/'),
19     ('襄阳家教网','http://www.jiajiao100.com/'),
20 ]
21 
22 def get_html(url_info):
23     print(os.getppid(), os.getpid())
24     url = url_info[1]
25     path = os.path.join('response', url_info[0] + '.html')
26     response = requests.get(url, headers=headers)
27     response.encoding = 'utf-8'
28     with open(path, 'w', encoding='utf-8')as f:
29         f.write(response.text)
30 
31 if __name__ == '__main__':
32     start = time.time()
33     t_list=[]
34     for url_info in urls:
35         # 为每一个任务开启线程
36         t=Thread(target=get_html,args=(url_info,))
37         t_list.append(t)
38         t.start()
39     print(activeCount())#存活的线程个数
40     #阻塞直到所有线程结束
41     for t in t_list:
42         t.join()
43     t=time.time()-start
44     print(t)#1.2163612842559814

异步多线程

python 异步爬虫 爬虫异步请求_多进程

python 异步爬虫 爬虫异步请求_html_02

1 '''
 2 异步线程池
 3 '''
 4 import os
 5 import time
 6 import requests
 7 from threading import activeCount
 8 from concurrent.futures import ThreadPoolExecutor
 9 headers={
10 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'
11 }
12 urls = [
13     ('百度知道', 'https://zhidao.baidu.com/daily?fr=daohang'),
14     ('新浪', 'https://www.sina.com.cn/'),
15     ('腾讯网', 'https://www.qq.com/'),
16     ('简书', 'https://www.jianshu.com/'),
17     ('今日头条', 'https://www.toutiao.com/'),
18     ('新浪财经', 'https://finance.sina.com.cn/'),
19     ('东方财富', 'http://www.eastmoney.com/'),
20     ('襄阳家教网', 'http://www.jiajiao100.com/'),
21 ]
22 
23 
24 def get_html(url_info):
25     print(os.getppid(), os.getpid())
26     url = url_info[1]
27     path = os.path.join('response', url_info[0] + '.html')
28     response = requests.get(url, headers=headers)
29     return response,path
30 
31 
32 def done_callback(task):
33     path=task.result()[1]
34     response = task.result()[0]
35     response.encoding = 'utf-8'
36     with open(path, 'w', encoding='utf-8')as f:
37         f.write(response.text)
38 
39 if __name__ == '__main__':
40     start = time.time()
41     ts = ThreadPoolExecutor(8)
42     for url_info in urls:
43         task = ts.submit(get_html, url_info)
44         task.add_done_callback(done_callback)
45     print(activeCount())
46     ts.shutdown()
47     t = time.time() - start
48     print(t)  #1.2402942180633545

异步线程池

另一种线程池:

1 '''
 2 异步线程池from multiprocessing.dummy import Pool
 3 '''
 4 import os
 5 import time
 6 import requests
 7 from multiprocessing.dummy import Pool
 8 headers={
 9 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'
10 }
11 urls = [
12     ('百度知道', 'https://zhidao.baidu.com/daily?fr=daohang'),
13     ('新浪', 'https://www.sina.com.cn/'),
14     ('腾讯网', 'https://www.qq.com/'),
15     ('简书', 'https://www.jianshu.com/'),
16     ('今日头条', 'https://www.toutiao.com/'),
17     ('新浪财经', 'https://finance.sina.com.cn/'),
18     ('东方财富', 'http://www.eastmoney.com/'),
19     ('襄阳家教网', 'http://www.jiajiao100.com/'),
20 ]
21 
22 
23 def get_html(url_info):
24     print(os.getppid(), os.getpid())
25     url = url_info[1]
26     path = os.path.join('response', url_info[0] + '.html')
27     response = requests.get(url, headers=headers)
28 
29     response.encoding = 'utf-8'
30     with open(path, 'w', encoding='utf-8')as f:
31         f.write(response.text)
32 
33 
34 if __name__ == '__main__':
35     start = time.time()
36     pool = Pool(8)
37     pool.map(get_html,urls)
38     t = time.time() - start
39     print(t)  #0.7495629787445068

分析对比:测试结果进程耗时最长,线程耗时时间最短。虽然在处理多任务时,开启多个进程或线程能提高效率,但是在实际运行时也会受到一些因素的约束,达不到期望的效果。

 

2.异步处理规避阻塞是处理问题的思路,接下来对比一下异步多进程/进程池与多线程/线程池:  

  (1)解决同步调用方案之多线程/多进程

好处:在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程),这样任何一个连接的阻塞都不会影响其他的连接。


  •     弊端:开启多进程或都线程的方式,我们是无法无限制地开启多进程或多线程的:在遇到要同时响应成百上千路的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界响应效率,而且线程与进程本身也更容易进入假死状态。

 

  (2) 解决同步调用方案之线程/进程池

    好处:很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程,并让空闲的线程重新承担新的执行任务。可以很好的降低系统开销。

  •     弊端:“线程池”和“连接池”技术也只是在一定程度上缓解了频繁调用IO接口带来的资源占用。而且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。所以使用“池”必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。

  “线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,在遇到IO阻塞是并不能完全充分利用cpu,因此需要通过非阻塞接口来解决这个问题.