目录
前言
代码分析
Main入口
构建(Build)网络
BatchStream
推理(Infer)过程
资源释放
前言
TensorRT可以通过INT8量化处理网络,然后大幅加速网络推理速度,本文旨在详细分析MNIST INT8 Sample 的代码,解释如何使用TensorRT 对网络做INT8 量化处理。
关于INT8 量化的背景知识可以参考博文TensorRT INT8校准与量化原理
代码分析
sampleINT8的github 代码参考link: https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleINT8
程序的主要流程分为 main与程序输入参数初始化 -> 网络构建 -> 网络推理 -> 释放资源结束 这几个阶段,下面逐个阶段分析代码
Main入口
//!
//! \brief Initializes members of the params struct using the command line args
//!
SampleINT8Params initializeSampleParams(const samplesCommon::Args& args, int batchSize)
{
SampleINT8Params params;
// Use directories provided by the user, in addition to default directories.
params.dataDirs = args.dataDirs;
params.dataDirs.emplace_back("data/mnist/");
params.dataDirs.emplace_back("int8/mnist/");
params.dataDirs.emplace_back("samples/mnist/");
params.dataDirs.emplace_back("data/samples/mnist/");
params.dataDirs.emplace_back("data/int8/mnist/");
params.dataDirs.emplace_back("data/int8_samples/mnist/");
params.batchSize = batchSize;
params.dlaCore = args.useDLACore;
params.nbCalBatches = 10;
params.calBatchSize = 50;
params.inputTensorNames.push_back("data");
params.outputTensorNames.push_back("prob");
params.prototxtFileName = "deploy.prototxt";
params.weightsFileName = "mnist_lenet.caffemodel";
params.networkName = "mnist";
return params;
}
//!
//! \brief Prints the help information for running this sample
//!
void printHelpInfo()
{
std::cout << "Usage: ./sample_int8 [-h or --help] [-d or --datadir=<path to data directory>] "
"[--useDLACore=<int>]"
<< std::endl;
std::cout << "--help Display help information" << std::endl;
std::cout << "--datadir Specify path to a data directory, overriding the default. This option can be used "
"multiple times to add multiple directories."
<< std::endl;
std::cout << "--useDLACore=N Specify a DLA engine for layers that support DLA. Value can range from 0 to n-1, "
"where n is the number of DLA engines on the platform."
<< std::endl;
std::cout << "batch=N Set batch size (default = 32)." << std::endl;
std::cout << "start=N Set the first batch to be scored (default = 100). All batches before this batch will "
"be used for calibration."
<< std::endl;
std::cout << "score=N Set the number of batches to be scored (default = 400)." << std::endl;
}
int main(int argc, char** argv)
{
if (argc >= 2 && (!strncmp(argv[1], "help", 4) || !strncmp(argv[1], "--help", 6) || !strncmp(argv[1], "--h", 3)))
{
printHelpInfo();
return EXIT_FAILURE;
}
// By default we score over 40K images starting at 3200, so we don't score those used to search calibration
int batchSize = 32;
int firstScoreBatch = 100;
int nbScoreBatches = 400;
// Parse extra arguments
for (int i = 1; i < argc; ++i)
{
if (!strncmp(argv[i], "batch=", 6))
{
batchSize = atoi(argv[i] + 6);
}
else if (!strncmp(argv[i], "start=", 6))
{
firstScoreBatch = atoi(argv[i] + 6);
}
else if (!strncmp(argv[i], "score=", 6))
{
nbScoreBatches = atoi(argv[i] + 6);
}
}
if (batchSize > 128)
{
gLogError << "Please provide batch size <= 128" << std::endl;
return EXIT_FAILURE;
}
if ((firstScoreBatch + nbScoreBatches) * batchSize > 500000)
{
gLogError << "Only 50000 images available" << std::endl;
return EXIT_FAILURE;
}
samplesCommon::Args args;
samplesCommon::parseArgs(args, argc, argv);
SampleINT8 sample(initializeSampleParams(args, batchSize));
......
- 检查程序输入参数,如果不符合要求,则print help的提示信息
- 通过initializeSampleParams函数设置默认参数的值
int main(int argc, char** argv)
{
......
std::vector<std::string> dataTypeNames = {"FP32", "FP16", "INT8"};
std::vector<DataType> dataTypes = {DataType::kFLOAT, DataType::kHALF, DataType::kINT8};
std::vector<std::pair<float, float>> scores(3, std::make_pair(0.0f, 0.0f));
for (size_t i = 0; i < dataTypes.size(); i++)
{
gLogInfo << dataTypeNames[i] << " run:" << nbScoreBatches << " batches of size " << batchSize << " starting at "
<< firstScoreBatch << std::endl;
if (!sample.build(dataTypes[i]))
{
if (!sample.isSupported(dataTypes[i]))
{
gLogWarning << "Skipping " << dataTypeNames[i] << " since the platform does not support this data type."
<< std::endl;
continue;
}
return gLogger.reportFail(sampleTest);
}
if (!sample.infer(scores[i], firstScoreBatch, nbScoreBatches))
{
return gLogger.reportFail(sampleTest);
}
}
......
- 根据FP32, FP16, INT8 三种数据类型来构建网络和推理网络
构建(Build)网络
bool SampleINT8::build(DataType dataType)
{
auto builder = SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(gLogger.getTRTLogger()));
if (!builder)
{
return false;
}
auto network = SampleUniquePtr<nvinfer1::INetworkDefinition>(builder->createNetwork());
if (!network)
{
return false;
}
auto config = SampleUniquePtr<nvinfer1::IBuilderConfig>(builder->createBuilderConfig());
if (!config)
{
return false;
}
auto parser = SampleUniquePtr<nvcaffeparser1::ICaffeParser>(nvcaffeparser1::createCaffeParser());
if (!parser)
{
return false;
}
if ((dataType == DataType::kINT8 && !builder->platformHasFastInt8())
|| (dataType == DataType::kHALF && !builder->platformHasFastFp16()))
{
return false;
}
auto constructed = constructNetwork(builder, network, config, parser, dataType);
......
- TensorRT的标准流程,创建IBuilder -> 创建INetworkDefinition -> 创建IBuilderConfig -> 创建caffe模型的分析器ICaffeParser,判断硬件平台是否支持native FP16或INT8
- 通过consstructNetwork函数分析caffe模型,构建网络
bool SampleINT8::constructNetwork(SampleUniquePtr<nvinfer1::IBuilder>& builder,
SampleUniquePtr<nvinfer1::INetworkDefinition>& network, SampleUniquePtr<nvinfer1::IBuilderConfig>& config,
SampleUniquePtr<nvcaffeparser1::ICaffeParser>& parser, DataType dataType)
{
mEngine = nullptr;
const nvcaffeparser1::IBlobNameToTensor* blobNameToTensor
= parser->parse(locateFile(mParams.prototxtFileName, mParams.dataDirs).c_str(),
locateFile(mParams.weightsFileName, mParams.dataDirs).c_str(), *network,
dataType == DataType::kINT8 ? DataType::kFLOAT : dataType);
for (auto& s : mParams.outputTensorNames)
{
network->markOutput(*blobNameToTensor->find(s.c_str()));
}
// Calibrator life time needs to last until after the engine is built.
std::unique_ptr<IInt8Calibrator> calibrator;
config->setAvgTimingIterations(1);
config->setMinTimingIterations(1);
config->setMaxWorkspaceSize(1_GiB);
config->setFlag(BuilderFlag::kDEBUG);
if (dataType == DataType::kHALF)
{
config->setFlag(BuilderFlag::kFP16);
}
if (dataType == DataType::kINT8)
{
config->setFlag(BuilderFlag::kINT8);
}
builder->setMaxBatchSize(mParams.batchSize);
if (dataType == DataType::kINT8)
{
MNISTBatchStream calibrationStream(mParams.calBatchSize, mParams.nbCalBatches, "train-images-idx3-ubyte",
"train-labels-idx1-ubyte", mParams.dataDirs);
calibrator.reset(new Int8EntropyCalibrator2<MNISTBatchStream>(
calibrationStream, 0, mParams.networkName.c_str(), mParams.inputTensorNames[0].c_str()));
config->setInt8Calibrator(calibrator.get());
}
......
- 通过parser->parse分析caffe模型分析和权重文件结合dataType是INT8还是FP 来构建network对象
- 通过network->markOutput(*blobNameToTensor->find(s.c_str())) 标记网络output的Tensor
- 通过config 配置网络每一层的迭代次数和网络占用的内存大小,根据dataType设置Flag
- 通过builder->setMaxBatchSize设置网络input的batchSize
- 如果是dataType是INT8类型,则构建BatchStream对象用于获取执行校准需要的calibration数据
- 通过calibrator.reset(new Int8EntropyCalibrator2<MNISTBatchStream>( calibrationStream ... 构建TensorRT需要的calibration interface,TensorRT通过该interface在量化过程中获取calibration数据,关于BatchStream的详细分析如下
- 通过config->setInt8Calibrator(calibrator.get()); 将calibration interface配置到网络的config中
BatchStream
class IBatchStream
{
public:
virtual void reset(int firstBatch) = 0;
virtual bool next() = 0;
virtual void skip(int skipCount) = 0;
virtual float* getBatch() = 0;
virtual float* getLabels() = 0;
virtual int getBatchesRead() const = 0;
virtual int getBatchSize() const = 0;
virtual nvinfer1::Dims getDims() const = 0;
};
class MNISTBatchStream : public IBatchStream
{
public:
MNISTBatchStream(int batchSize, int maxBatches, const std::string& dataFile, const std::string& labelsFile,
const std::vector<std::string>& directories)
: mBatchSize{batchSize}
, mMaxBatches{maxBatches}
, mDims{3, 1, 28, 28} //!< We already know the dimensions of MNIST images.
{
readDataFile(locateFile(dataFile, directories));
readLabelsFile(locateFile(labelsFile, directories));
}
void reset(int firstBatch) override
{
mBatchCount = firstBatch;
}
bool next() override
{
if (mBatchCount >= mMaxBatches)
{
return false;
}
++mBatchCount;
return true;
}
void skip(int skipCount) override
{
mBatchCount += skipCount;
}
float* getBatch() override
{
return mData.data() + (mBatchCount * mBatchSize * samplesCommon::volume(mDims));
}
float* getLabels() override
{
return mLabels.data() + (mBatchCount * mBatchSize);
}
int getBatchesRead() const override
{
return mBatchCount;
}
int getBatchSize() const override
{
return mBatchSize;
}
nvinfer1::Dims getDims() const override
{
return mDims;
}
private:
void readDataFile(const std::string& dataFilePath)
{
std::ifstream file{dataFilePath.c_str(), std::ios::binary};
int magicNumber, numImages, imageH, imageW;
file.read(reinterpret_cast<char*>(&magicNumber), sizeof(magicNumber));
// All values in the MNIST files are big endian.
magicNumber = samplesCommon::swapEndianness(magicNumber);
assert(magicNumber == 2051 && "Magic Number does not match the expected value for an MNIST image set");
// Read number of images and dimensions
file.read(reinterpret_cast<char*>(&numImages), sizeof(numImages));
file.read(reinterpret_cast<char*>(&imageH), sizeof(imageH));
file.read(reinterpret_cast<char*>(&imageW), sizeof(imageW));
numImages = samplesCommon::swapEndianness(numImages);
imageH = samplesCommon::swapEndianness(imageH);
imageW = samplesCommon::swapEndianness(imageW);
// The MNIST data is made up of unsigned bytes, so we need to cast to float and normalize.
int numElements = numImages * imageH * imageW;
std::vector<uint8_t> rawData(numElements);
file.read(reinterpret_cast<char*>(rawData.data()), numElements * sizeof(uint8_t));
mData.resize(numElements);
std::transform(
rawData.begin(), rawData.end(), mData.begin(), [](uint8_t val) { return static_cast<float>(val) / 255.f; });
}
void readLabelsFile(const std::string& labelsFilePath)
{
std::ifstream file{labelsFilePath.c_str(), std::ios::binary};
int magicNumber, numImages;
file.read(reinterpret_cast<char*>(&magicNumber), sizeof(magicNumber));
// All values in the MNIST files are big endian.
magicNumber = samplesCommon::swapEndianness(magicNumber);
assert(magicNumber == 2049 && "Magic Number does not match the expected value for an MNIST labels file");
file.read(reinterpret_cast<char*>(&numImages), sizeof(numImages));
numImages = samplesCommon::swapEndianness(numImages);
std::vector<uint8_t> rawLabels(numImages);
file.read(reinterpret_cast<char*>(rawLabels.data()), numImages * sizeof(uint8_t));
mLabels.resize(numImages);
std::transform(
rawLabels.begin(), rawLabels.end(), mLabels.begin(), [](uint8_t val) { return static_cast<float>(val); });
}
int mBatchSize{0};
int mBatchCount{0}; //!< The batch that will be read on the next invocation of next()
int mMaxBatches{0};
Dims mDims{};
std::vector<float> mData{};
std::vector<float> mLabels{};
};
- 通过构造函数获得校准calibrationS数据的BatchSize和Batch number
- 通过readDataFile读取calibrationS数据集的数据文件,包括文件中共有多少Image,每个Image的height和width,计算总共要读取的数据量numElements = numImages * imageH * imageW;,将文件的数据读取到mData
- 通过readDataFile读取calibrationS数据集的labels文件,过程与readDataFile类似,只是将读取的数据保存到mLabels
- next()函数返回下一个Batch的count
- getBatch 返回当前BatchCount对应的数据指针,即数据mData偏移(mBatchCount * mBatchSize * samplesCommon::volume(mDims)) 的位置
- getLabels() 返回当前BatchCount对应的label指针,即mLabels.data() 偏移 (mBatchCount * mBatchSize) 的位置
template <typename TBatchStream>
class EntropyCalibratorImpl
{
public:
EntropyCalibratorImpl(
TBatchStream stream, int firstBatch, std::string networkName, const char* inputBlobName, bool readCache = true)
: mStream{stream}
, mCalibrationTableName("CalibrationTable" + networkName)
, mInputBlobName(inputBlobName)
, mReadCache(readCache)
{
nvinfer1::Dims dims = mStream.getDims();
mInputCount = samplesCommon::volume(dims) * mStream.getBatchSize();
CHECK(cudaMalloc(&mDeviceInput, mInputCount * sizeof(float)));
mStream.reset(firstBatch);
}
virtual ~EntropyCalibratorImpl()
{
CHECK(cudaFree(mDeviceInput));
}
int getBatchSize() const
{
return mStream.getBatchSize();
}
bool getBatch(void* bindings[], const char* names[], int nbBindings)
{
if (!mStream.next())
{
return false;
}
CHECK(cudaMemcpy(mDeviceInput, mStream.getBatch(), mInputCount * sizeof(float), cudaMemcpyHostToDevice));
assert(!strcmp(names[0], mInputBlobName));
bindings[0] = mDeviceInput;
return true;
}
const void* readCalibrationCache(size_t& length)
{
mCalibrationCache.clear();
std::ifstream input(mCalibrationTableName, std::ios::binary);
input >> std::noskipws;
if (mReadCache && input.good())
{
std::copy(std::istream_iterator<char>(input), std::istream_iterator<char>(),
std::back_inserter(mCalibrationCache));
}
length = mCalibrationCache.size();
return length ? mCalibrationCache.data() : nullptr;
}
void writeCalibrationCache(const void* cache, size_t length)
{
std::ofstream output(mCalibrationTableName, std::ios::binary);
output.write(reinterpret_cast<const char*>(cache), length);
}
private:
TBatchStream mStream;
size_t mInputCount;
std::string mCalibrationTableName;
const char* mInputBlobName;
bool mReadCache{true};
void* mDeviceInput{nullptr};
std::vector<char> mCalibrationCache;
};
//! \class Int8EntropyCalibrator2
//!
//! \brief Implements Entropy calibrator 2.
//! CalibrationAlgoType is kENTROPY_CALIBRATION_2.
//!
template <typename TBatchStream>
class Int8EntropyCalibrator2 : public IInt8EntropyCalibrator2
{
public:
Int8EntropyCalibrator2(
TBatchStream stream, int firstBatch, const char* networkName, const char* inputBlobName, bool readCache = true)
: mImpl(stream, firstBatch, networkName, inputBlobName, readCache)
{
}
int getBatchSize() const override
{
return mImpl.getBatchSize();
}
bool getBatch(void* bindings[], const char* names[], int nbBindings) override
{
return mImpl.getBatch(bindings, names, nbBindings);
}
const void* readCalibrationCache(size_t& length) override
{
return mImpl.readCalibrationCache(length);
}
void writeCalibrationCache(const void* cache, size_t length) override
{
mImpl.writeCalibrationCache(cache, length);
}
private:
EntropyCalibratorImpl<TBatchStream> mImpl;
};
- TensorRT需要应用程序实现calibration的interface IInt8Calibrator, 其中IInt8EntropyCalibrator2是它的继承类,所以在本示例程序中通过Int8EntropyCalibrator2实现了IInt8EntropyCalibrator2,而Int8EntropyCalibrator2则是通过EntropyCalibratorImpl类实现了IInt8Calibrator需要提供的几个接口方法,包括
- 构造函数中通过mInputCount = samplesCommon::volume(dims) * mStream.getBatchSize(); 计算每一个input batch中calibration数据个数,然后通过cudaMalloc(&mDeviceInput, mInputCount * sizeof(float)) 在GPU Device上分配保存input数据的存储空间
- 在getBatch方法中,通过cudaMemcpy(mDeviceInput, mStream.getBatch(), mInputCount * sizeof(float), cudaMemcpyHostToDevice) 将BatchStream提供的一次 batch数据从host 传送到device端
- 在readCalibrationCache/writeCalibrationCache方法中,将网络每一层校准后得到的Calibration阈值保存到CalibrationTable以便后续读取重复使用
bool SampleINT8::constructNetwork(SampleUniquePtr<nvinfer1::IBuilder>& builder,
SampleUniquePtr<nvinfer1::INetworkDefinition>& network, SampleUniquePtr<nvinfer1::IBuilderConfig>& config,
SampleUniquePtr<nvcaffeparser1::ICaffeParser>& parser, DataType dataType)
{
......
if (mParams.dlaCore >= 0)
{
samplesCommon::enableDLA(builder.get(), config.get(), mParams.dlaCore);
if (mParams.batchSize > builder->getMaxDLABatchSize())
{
gLogError << "Requested batch size " << mParams.batchSize << " is greater than the max DLA batch size of "
<< builder->getMaxDLABatchSize() << ". Reducing batch size accordingly." << std::endl;
return false;
}
}
mEngine = std::shared_ptr<nvinfer1::ICudaEngine>(
builder->buildEngineWithConfig(*network, *config), samplesCommon::InferDeleter());
if (!mEngine)
{
return false;
}
return true;
}
- 根据程序输入参数判断是否要enable NV DLA硬件加速
- 创建ICudaEngine用于后续网络推理过程
推理(Infer)过程
bool SampleINT8::infer(std::pair<float, float>& score, int firstScoreBatch, int nbScoreBatches)
{
float ms{0.0f};
// Create RAII buffer manager object
samplesCommon::BufferManager buffers(mEngine, mParams.batchSize);
auto context = SampleUniquePtr<nvinfer1::IExecutionContext>(mEngine->createExecutionContext());
if (!context)
{
return false;
}
MNISTBatchStream batchStream(
mParams.batchSize, nbScoreBatches, "train-images-idx3-ubyte", "train-labels-idx1-ubyte", mParams.dataDirs);
batchStream.skip(firstScoreBatch);
Dims outputDims = context->getEngine().getBindingDimensions(
context->getEngine().getBindingIndex(mParams.outputTensorNames[0].c_str()));
int outputSize = samplesCommon::volume(outputDims);
int top1{0}, top5{0};
float totalTime{0.0f};
......
- 构建BufferManager 分配Host与Device的存储空间供推理过程输入网络input数据和获取网络output数据,关于BufferManager数据结构的详细分析请参考我的博文 TensorRT sampleMNIST 详解
- 创建推理需要的IExecutionContext对象
- 创建Score数据集的BatchStream,用于获取Score数据集的data与label数据
- 获取网络output Tensor的维度outputDims,计算出outputSzie的大小
bool SampleINT8::processInput(const samplesCommon::BufferManager& buffers, const float* data)
{
// Fill data buffer
float* hostDataBuffer = static_cast<float*>(buffers.getHostBuffer(mParams.inputTensorNames[0]));
std::memcpy(hostDataBuffer, data, mParams.batchSize * samplesCommon::volume(mInputDims) * sizeof(float));
return true;
}
......
bool SampleINT8::infer(std::pair<float, float>& score, int firstScoreBatch, int nbScoreBatches)
{
......
while (batchStream.next())
{
// Read the input data into the managed buffers
assert(mParams.inputTensorNames.size() == 1);
if (!processInput(buffers, batchStream.getBatch()))
{
return false;
}
// Memcpy from host input buffers to device input buffers
buffers.copyInputToDevice();
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// Use CUDA events to measure inference time
cudaEvent_t start, end;
CHECK(cudaEventCreateWithFlags(&start, cudaEventBlockingSync));
CHECK(cudaEventCreateWithFlags(&end, cudaEventBlockingSync));
cudaEventRecord(start, stream);
bool status = context->enqueue(mParams.batchSize, buffers.getDeviceBindings().data(), stream, nullptr);
if (!status)
{
return false;
}
cudaEventRecord(end, stream);
cudaEventSynchronize(end);
cudaEventElapsedTime(&ms, start, end);
cudaEventDestroy(start);
cudaEventDestroy(end);
totalTime += ms;
// Memcpy from device output buffers to host output buffers
buffers.copyOutputToHost();
CHECK(cudaStreamDestroy(stream));
top1 += calculateScore(buffers, batchStream.getLabels(), mParams.batchSize, outputSize, 1);
top5 += calculateScore(buffers, batchStream.getLabels(), mParams.batchSize, outputSize, 5);
if (batchStream.getBatchesRead() % 100 == 0)
{
gLogInfo << "Processing next set of max 100 batches" << std::endl;
}
}
int imagesRead = batchStream.getBatchesRead() * mParams.batchSize;
score.first = float(top1) / float(imagesRead);
score.second = float(top5) / float(imagesRead);
gLogInfo << "Top1: " << score.first << ", Top5: " << score.second << std::endl;
gLogInfo << "Processing " << imagesRead << " images averaged " << totalTime / imagesRead << " ms/image and "
<< totalTime / batchStream.getBatchesRead() << " ms/batch." << std::endl;
return true;
- while循环持续从score数据集合中按batchSize的大小读取一批input数据
- 通过processInput函数将input数据copy到BufferManager的host 存储空间中
- 通过buffers.copyInputToDevice(); 将BufferManager的host 存储空间数据传送到GPU device 存储空间,实现input数据的输入
- 通过cudaStreamCreate 创建并行计算的stream对象
- 通过cudaEventCreateWithFlags创建统计时间的start和end 对象
- 通过context->enqueue 开始执行在score数据集上的网络推理过程
- 通过cudaEventSynchronize同步等待cuda并行计算的推理过程结束
- 通过cudaEventElapsedTime计算本次推理过程的时间
- 通过buffers.copyOutputToHost(); 将推理的output从GPU device端传送到host 端
- 通过calculateScore函数来计算本次推理过程的精度,具体过程如下
int SampleINT8::calculateScore(
const samplesCommon::BufferManager& buffers, float* labels, int batchSize, int outputSize, int threshold)
{
float* probs = static_cast<float*>(buffers.getHostBuffer(mParams.outputTensorNames[0]));
int success = 0;
for (int i = 0; i < batchSize; i++)
{
float *prob = probs + outputSize * i, correct = prob[(int) labels[i]];
int better = 0;
for (int j = 0; j < outputSize; j++)
{
if (prob[j] >= correct)
{
better++;
}
}
if (better <= threshold)
{
success++;
}
}
return success;
}
- probs与labels指针的关系如下图所示
- 特别解释一下for循环中的better和success的计算规则
- calculateScore函数本质上是计算在1次Batch推理结果中排Top1/Top5 的正确结果个数,其中Top1/Top5的计算规则如下图所示
- 最终calculateScore函数返回一个BatchSize的 input image推理后,概率排名Top1/Top5 的正确output结果个数
bool SampleINT8::infer(std::pair<float, float>& score, int firstScoreBatch, int nbScoreBatches)
{
......
int imagesRead = batchStream.getBatchesRead() * mParams.batchSize;
score.first = float(top1) / float(imagesRead);
score.second = float(top5) / float(imagesRead);
gLogInfo << "Top1: " << score.first << ", Top5: " << score.second << std::endl;
gLogInfo << "Processing " << imagesRead << " images averaged " << totalTime / imagesRead << " ms/image and "
<< totalTime / batchStream.getBatchesRead() << " ms/batch." << std::endl;
return true;
}
- 总共向网络输入了imagesRead个image做推理,计算推理结果中Top1/Top5的正确结果个数占总输入image的比例输出到log,即如下的程序运行log
&&&& RUNNING TensorRT.sample_int8 # ./sample_int8 mnist
[I] FP32 run:400 batches of size 100 starting at 100
[I] Processing next set of max 100 batches
[I] Processing next set of max 100 batches
[I] Processing next set of max 100 batches
[I] Processing next set of max 100 batches
[I] Top1: 0.9904, Top5: 1
[I] Processing 40000 images averaged 0.00170236 ms/image and 0.170236 ms/batch.
[I] FP16 run:400 batches of size 100 starting at 100
[I] Processing next set of max 100 batches
[I] Processing next set of max 100 batches
[I] Processing next set of max 100 batches
[I] Processing next set of max 100 batches
[I] Top1: 0.9904, Top5: 1
[I] Processing 40000 images averaged 0.00128872 ms/image and 0.128872 ms/batch.
INT8 run:400 batches of size 100 starting at 100
[I] Processing next set of max 100 batches
[I] Processing next set of max 100 batches
[I] Processing next set of max 100 batches
[I] Processing next set of max 100 batches
[I] Top1: 0.9908, Top5: 1
[I] Processing 40000 images averaged 0.000946117 ms/image and 0.0946117 ms/batch.
&&&& PASSED TensorRT.sample_int8 # ./sample_int8 mnist
资源释放
int main(int argc, char** argv)
{
......
auto isApproximatelyEqual = [](float a, float b, double tolerance) { return (std::abs(a - b) <= tolerance); };
double fp16tolerance{0.5}, int8tolerance{1.0};
if (scores[1].first != 0.0f && !isApproximatelyEqual(scores[0].first, scores[1].first, fp16tolerance))
{
gLogError << "FP32(" << scores[0].first << ") and FP16(" << scores[1].first
<< ") Top1 accuracy differ by more than " << fp16tolerance << "." << std::endl;
return gLogger.reportFail(sampleTest);
}
if (scores[2].first != 0.0f && !isApproximatelyEqual(scores[0].first, scores[2].first, int8tolerance))
{
gLogError << "FP32(" << scores[0].first << ") and Int8(" << scores[2].first
<< ") Top1 accuracy differ by more than " << int8tolerance << "." << std::endl;
return gLogger.reportFail(sampleTest);
}
if (scores[1].second != 0.0f && !isApproximatelyEqual(scores[0].second, scores[1].second, fp16tolerance))
{
gLogError << "FP32(" << scores[0].second << ") and FP16(" << scores[1].second
<< ") Top5 accuracy differ by more than " << fp16tolerance << "." << std::endl;
return gLogger.reportFail(sampleTest);
}
if (scores[2].second != 0.0f && !isApproximatelyEqual(scores[0].second, scores[2].second, int8tolerance))
{
gLogError << "FP32(" << scores[0].second << ") and INT8(" << scores[2].second
<< ") Top5 accuracy differ by more than " << int8tolerance << "." << std::endl;
return gLogger.reportFail(sampleTest);
}
if (!sample.teardown())
{
return gLogger.reportFail(sampleTest);
}
return gLogger.reportPass(sampleTest);
}
- 计算不同dataType中Top1和Top5的精度差异是否符合预设的阈值xxxtolerance
- 通过teardown释放程序的资源