问题:

在第一阶段的基础上面,在MySQL开发方面,掌握很多小技巧,包括常规SQL优化(group by/order by/rand优化等);除了能够搭建MySQL,还能够冷热备份MySQL数据,还知道影响innodb/myisam性能的配置选项(比如key_buffer/query_cache/sort_buffer/innodb_buffer_pool_size/innodb_flush_log_at_trx_commit等),也知道这些选项配置成为多少值合适;另外也了解一些特殊的配置选项,比如  知道如何搭建mysql主从同步的环境,知道各个binlog_format的区别;知道MySQL的性能追查,包括slow_log/explain等,还能够知道基本的索引建立处理等知识;原理方面了解基本的MySQL的架构(Server+存储引擎),知道基本的InnoDB/MyISAM索引存储结构和不同(聚簇索引,B树);知道基本的InnoDB事务处理机制;了解大部分MySQL异常情况的处理方案(或者知道哪儿找到处理方案)。条件允许的情况,建议了解一下NoSQL的代表MongoDB数据库,顺便对比跟MySQL的差别,同事能够在合适的应用场景安全谨慎的使用MongoDB,知道基本的PHP与MongoDB的结合开发。

 

一、冷热备份MySQL数据

冷备份(off, 慢, 时间点上恢复)
冷备份发生在数据库已经正常关闭的情况下,当正常关闭时会提供给我们一个完整的数据库。冷备份是将关键性文件拷贝到另外位置的一种说法。对于备份数据库信息而言,冷备份是最快和最安全的方法。

冷备份的优点: 
1.是非常快速的备份方法(只需拷贝文件) 
2.容易归档(简单拷贝即可) 
3.容易恢复到某个时间点上(只需将文件再拷贝回去) 
4.能与归档方法相结合,作数据库“最新状态”的恢复。 
5.低度维护,高度安全。 

冷备份的缺点: 
1.单独使用时,只能提供到“某一时间点上”的恢复。 
2.在实施备份的全过程中,数据库必须要作备份而不能作其它工作。也就是说,在冷备份过程中,数据库必须是关闭状态。 
3.若磁盘空间有限,只能拷贝到磁带等其它外部存储设备上,速度会很慢。 
4.不能按表或按用户恢复。 
值得注意的是冷备份必须在数据库关闭的情况下进行,当数据库处于打开状态时,执行数据库文件系统备份是无效的 。而且在恢复后一定要把数据库文件的属组和属主改为mysql。

热备份 (on, 快)
热备份是在数据库运行的情况下,备份数据库操作的sql语句,当数据库发生问题时,可以重新执行一遍备份的sql语句。

热备份的优点: 
1.可在表空间或数据文件级备份,备份时间短。 
2.备份时数据库仍可使用。 
3.可达到秒级恢复(恢复到某一时间点上)。 
4.可对几乎所有数据库实体作恢复。 
5.恢复是快速的,在大多数情况下在数据库仍工作时恢复。 

热备份的缺点: 
1.不能出错,否则后果严重。 
2.若热备份不成功,所得结果不可用于时间点的恢复。 
3.因难于维护,所以要特别仔细小心,不允许“以失败而告终”。

 

二、常规sql优化30条

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。 

2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 

3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: 
select id from t where num is null 
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: 
select id from t where num=0 

4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如: 
select id from t where num=10 or num=20 
可以这样查询: 
select id from t where num=10 
union all 
select id from t where num=20 

5.下面的查询也将导致全表扫描: 
select id from t where name like '%abc%' 
若要提高效率,可以考虑全文检索。 

6.in 和 not in 也要慎用,否则会导致全表扫描,如: 
select id from t where num in(1,2,3) 
对于连续的数值,能用 between 就不要用 in 了: 
select id from t where num between 1 and 3 

7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描: 
select id from t where num=@num 
可以改为强制查询使用索引: 
select id from t with(index(索引名)) where num=@num 

8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如: 
select id from t where num/2=100 
应改为: 
select id from t where num=100*2 

9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如: 
select id from t where substring(name,1,3)='abc'--name以abc开头的id 
select id from t where datediff(day,createdate,'2005-11-30')=0--'2005-11-30'生成的id 
应改为: 
select id from t where name like 'abc%' 
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1' 

10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。 

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。 

12.不要写一些没有意义的查询,如需要生成一个空表结构: 
select col1,col2 into #t from t where 1=0 
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样: 
create table #t(...) 

13.很多时候用 exists 代替 in 是一个好的选择: 
select num from a where num in(select num from b) 
用下面的语句替换: 
select num from a where exists(select 1 from b where num=a.num) 

14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。 

15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。 

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。 

17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。 

18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。 

19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。 

20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。 

21.避免频繁创建和删除临时表,以减少系统表资源的消耗。 

22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。 

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。 

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。 

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。 

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。 

27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。 

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。 

29.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。 

30.尽量避免大事务操作,提高系统并发能力。

 

三、sql order by rand随机数据优化与性能对比

 

测试环境

apache2.2/php5.2/mysql5

测试数据

15W+数据,数据表大小600MB

测试语句

最初使用的是 order by rand()了,发现几万条数据居然要10秒之长的时间很是悲剧吧

 代码如下

复制代码

SELECT * FROM `表名`  order by rand()

显示行 0 - 29 (154,825 总计, 查询花费 10.1125 秒)

后来网上搜索到如下方法,同样数据感觉有很大的提高了(这里测试的是15W数据)

 代码如下

复制代码

SELECT * FROM 表名 WHERE id >= ((SELECT MAX(id) FROM 表名)-(SELECT MIN(id) FROM 表名)) *

RAND() + (SELECT MIN(id) FROM 表名) LIMIT 10

显示行 0 - 29 (154,825 总计, 查询花费 0.0221 秒)

感觉不错了,有朋友说用join可能更好,于时找了一段代码测试一下查询花费 0.0025 秒,又提供了几倍呀。

 代码如下

复制代码

SELECT *
FROM 表名 AS t1
JOIN (
SELECT ROUND( RAND( ) * (
SELECT MAX( id )
FROM 表名 ) ) AS id
) AS t2
WHERE t1.id >= t2.id
ORDER BY t1.id ASC
LIMIT 10

显示行 0 - 9 (10 总计, 查询花费 0.0025 秒)

最后还可以优化一下

 代码如下

复制代码

SELECT s_url,title
FROM 表名 AS t1
JOIN (
SELECT ROUND( RAND( ) * (
SELECT MAX( id )
FROM 表名 ) ) AS id
) AS t2
WHERE t1.id >= t2.id and t1.z_type = $z_type ORDER BY t1.id asc LIMIT 10

显示行 0 - 9 (10 总计, 查询花费 0.0008 秒)

总结一下,我们如果用同样的方法在字段选择时越少越好,这不从0.0025直接降到0.0008秒了哦。