RabbitTemplate发送端确认机制 rabbitmq保证发送消息成功_数据库


1.进行数据的入库

比如我们要发送一条订单消息,首先把业务数据也就是订单信息进行入库,然后生成一条消息,把消息也进行入库,这条消息应该包含消息状态属性,并设置初始值比如为0,表示消息创建成功正在发送中,这种方式缺陷在于我们要对数据库进行持久化两次。

2.首先要保证第一步消息都存储成功了,没有出现任何异常情况,然后生产端再进行消息发送。如果失败了就进行快速失败机制。

3.MQ把消息收到的结果应答(confirm)给生产端

4.生产端有一个Confirm Listener,去异步的监听Broker回送的响应,从而判断消息是否投递成功,如果成功,去数据库查询该消息,并将消息状态更新为1,表示消息投递成功。

假设第二步OK了,在第三步回送响应时,网络突然出现了闪断,导致生产端的Listener就永远收不到这条消息的confirm应答了,也就是说这条消息的状态就一直为0了。

5.此时我们需要设置一个规则,比如说消息在入库时候设置一个临界值timeout,5分钟之后如果还是0的状态那就需要把消息抽取出来。这里我们使用的是分布式定时任务,去定时抓取DB中距离消息创建时间超过5分钟的且状态为0的消息。

6.把抓取出来的消息进行重新投递(Retry Send),也就是从第二步开始继续往下走
7.当然有些消息可能就是由于一些实际的问题无法路由到Broker,比如routingKey设置不对,对应的队列被误删除了,那么这种 消息即使重试多次也仍然无法投递成功,所以需要对重试次数做限制,比如限制3次,如果投递次数大于三次,那么就将消息状 态更新为2,表示这个消息最终投递失败。

针对这种情况如何去做补偿呢,可以有一个补偿系统去查询这些最终失败的消息,然后给出失败的原因,当然这些可能都需要人工去操作。

第一种可靠性投递,在高并发的场景下是否适合?

对于第一种方案,我们需要做两次数据库的持久化操作,在高并发场景下显然数据库存在着性能瓶颈。其实在我们的核心链路中只需要对业务进行入库就可以了,消息就没必要先入库了,我们可以做消息的延迟投递,做二次确认,回调检查。

当然这种方案不一定能保障百分百投递成功,但是基本上可以保障大概99.9%的消息是OK的,有些特别极端的情况只能是人工去做补偿了,或者使用定时任务去做都可以。

使用第二种方式主要目的是为了减少数据库操作,提高并发量。

消息的延迟投递,做二次确认,回调检查


RabbitTemplate发送端确认机制 rabbitmq保证发送消息成功_数据库_02